{"title":"基于扩散的增强型网络可高效清除印章","authors":"Guohao Cui, Cihui Yang","doi":"10.1016/j.compeleceng.2024.109738","DOIUrl":null,"url":null,"abstract":"<div><div>Current diffusion models excel in computer vision tasks, but stamp removal from documents remains challenging, especially when stamps are light-colored and blend with text. Existing methods struggle to preserve background text and rely heavily on the training set, excelling in either text or table stamp removal, but not both. To address these problems, we propose an enhanced diffusion-based stamp removal model using a Spatial Attention Mechanism and a Simulate Rectified Linear Unit. Spatial Attention Mechanism combines the spatial transformation capabilities of the Spatial Transformer Network with the feature extraction of the Convolutional Block Attention Module for higher-quality images. Simulate Rectified Linear Unit mimics neuronal signal transmission in the human brain, enhancing feature extraction. Our diffusion model achieved a PSNR of 44.7, SSIM of 0.99, and RMSE of 3.47 on the stamp dataset, and performed optimally on the denoising-dirty-documents, CLWD, and DIBCO 2017 datasets. It also attained the highest PSNR of 26.8 on the DIBCO 2013 dataset, with other metrics close to the best. Code is available at <span><span>https://github.com/GuohaoCui/DiffusionModel</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109738"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enhanced diffusion-based network for efficient stamp removal\",\"authors\":\"Guohao Cui, Cihui Yang\",\"doi\":\"10.1016/j.compeleceng.2024.109738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Current diffusion models excel in computer vision tasks, but stamp removal from documents remains challenging, especially when stamps are light-colored and blend with text. Existing methods struggle to preserve background text and rely heavily on the training set, excelling in either text or table stamp removal, but not both. To address these problems, we propose an enhanced diffusion-based stamp removal model using a Spatial Attention Mechanism and a Simulate Rectified Linear Unit. Spatial Attention Mechanism combines the spatial transformation capabilities of the Spatial Transformer Network with the feature extraction of the Convolutional Block Attention Module for higher-quality images. Simulate Rectified Linear Unit mimics neuronal signal transmission in the human brain, enhancing feature extraction. Our diffusion model achieved a PSNR of 44.7, SSIM of 0.99, and RMSE of 3.47 on the stamp dataset, and performed optimally on the denoising-dirty-documents, CLWD, and DIBCO 2017 datasets. It also attained the highest PSNR of 26.8 on the DIBCO 2013 dataset, with other metrics close to the best. Code is available at <span><span>https://github.com/GuohaoCui/DiffusionModel</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50630,\"journal\":{\"name\":\"Computers & Electrical Engineering\",\"volume\":\"120 \",\"pages\":\"Article 109738\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Electrical Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045790624006657\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624006657","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
An enhanced diffusion-based network for efficient stamp removal
Current diffusion models excel in computer vision tasks, but stamp removal from documents remains challenging, especially when stamps are light-colored and blend with text. Existing methods struggle to preserve background text and rely heavily on the training set, excelling in either text or table stamp removal, but not both. To address these problems, we propose an enhanced diffusion-based stamp removal model using a Spatial Attention Mechanism and a Simulate Rectified Linear Unit. Spatial Attention Mechanism combines the spatial transformation capabilities of the Spatial Transformer Network with the feature extraction of the Convolutional Block Attention Module for higher-quality images. Simulate Rectified Linear Unit mimics neuronal signal transmission in the human brain, enhancing feature extraction. Our diffusion model achieved a PSNR of 44.7, SSIM of 0.99, and RMSE of 3.47 on the stamp dataset, and performed optimally on the denoising-dirty-documents, CLWD, and DIBCO 2017 datasets. It also attained the highest PSNR of 26.8 on the DIBCO 2013 dataset, with other metrics close to the best. Code is available at https://github.com/GuohaoCui/DiffusionModel.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.