基于掺杂 Mn2+ 离子的多相 MgTiO3 包晶的超级电容器设备

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohamad Hasan Aleinawi , Eminenur Saritas , Maria Stefan , Ameen Uddin Ammar , Abdalla Hroub , Feray Bakan Misirlioglu , Amelia Bocirnea , Sergiu Macavei , Septimiu Tripon , Emre Erdem , Rostas Arpad Mihai
{"title":"基于掺杂 Mn2+ 离子的多相 MgTiO3 包晶的超级电容器设备","authors":"Mohamad Hasan Aleinawi ,&nbsp;Eminenur Saritas ,&nbsp;Maria Stefan ,&nbsp;Ameen Uddin Ammar ,&nbsp;Abdalla Hroub ,&nbsp;Feray Bakan Misirlioglu ,&nbsp;Amelia Bocirnea ,&nbsp;Sergiu Macavei ,&nbsp;Septimiu Tripon ,&nbsp;Emre Erdem ,&nbsp;Rostas Arpad Mihai","doi":"10.1016/j.matchemphys.2024.130016","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, perovskites have become a hotspot for researchers attempting to exploit metal and oxygen vacancies in structures of the form MTiO<sub>3</sub>, facilitating the convenient electron/hole migration, thus displaying interesting properties. Magnesium Titanate (MgTiO<sub>3</sub>) is a prominent part of the perovskite class, exhibiting remarkable electrical, thermal, and chemical properties. Undoped and Mn-doped MgTiO<sub>3</sub> samples were obtained using a solid-state reaction starting from previously synthesized MgO and TiO<sub>2</sub> powders, which were separately doped with different Mn ion concentrations. The resulting multiphase materials with a major MgTiO<sub>3</sub> phase were thoroughly morpho-structurally analyzed employing XRD, STEM, Raman, PL, XPS, and EPR spectroscopy. The electrochemical results indicate that they show superior performance when used as electrode materials for supercapacitor application due to the high defect concentration as shown in EPR and PL spectroscopy and the ferroelectric behavior observed in XPS and XRD. When used in symmetric and asymmetric supercapacitor devices, they show promising results, with specific capacity values reaching up to 109 F/g for the symmetric and 609 F/g for the asymmetric devices, while energy and power density values reached 84.7 Wh/kg and 90.8 kW/kg respectively, proving a great potential in the energy storage field.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130016"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercapacitor devices based on multiphase MgTiO3 perovskites doped with Mn2+ ions\",\"authors\":\"Mohamad Hasan Aleinawi ,&nbsp;Eminenur Saritas ,&nbsp;Maria Stefan ,&nbsp;Ameen Uddin Ammar ,&nbsp;Abdalla Hroub ,&nbsp;Feray Bakan Misirlioglu ,&nbsp;Amelia Bocirnea ,&nbsp;Sergiu Macavei ,&nbsp;Septimiu Tripon ,&nbsp;Emre Erdem ,&nbsp;Rostas Arpad Mihai\",\"doi\":\"10.1016/j.matchemphys.2024.130016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, perovskites have become a hotspot for researchers attempting to exploit metal and oxygen vacancies in structures of the form MTiO<sub>3</sub>, facilitating the convenient electron/hole migration, thus displaying interesting properties. Magnesium Titanate (MgTiO<sub>3</sub>) is a prominent part of the perovskite class, exhibiting remarkable electrical, thermal, and chemical properties. Undoped and Mn-doped MgTiO<sub>3</sub> samples were obtained using a solid-state reaction starting from previously synthesized MgO and TiO<sub>2</sub> powders, which were separately doped with different Mn ion concentrations. The resulting multiphase materials with a major MgTiO<sub>3</sub> phase were thoroughly morpho-structurally analyzed employing XRD, STEM, Raman, PL, XPS, and EPR spectroscopy. The electrochemical results indicate that they show superior performance when used as electrode materials for supercapacitor application due to the high defect concentration as shown in EPR and PL spectroscopy and the ferroelectric behavior observed in XPS and XRD. When used in symmetric and asymmetric supercapacitor devices, they show promising results, with specific capacity values reaching up to 109 F/g for the symmetric and 609 F/g for the asymmetric devices, while energy and power density values reached 84.7 Wh/kg and 90.8 kW/kg respectively, proving a great potential in the energy storage field.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"329 \",\"pages\":\"Article 130016\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058424011441\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424011441","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近,研究人员试图利用 MTiO3 形式结构中的金属和氧空位,促进电子/空穴的便捷迁移,从而显示出有趣的特性,因此,透镜石已成为研究热点。钛酸镁(MgTiO3)是透晶石类的一个重要组成部分,具有显著的电学、热学和化学特性。未掺杂和锰掺杂的 MgTiO3 样品是通过固态反应从先前合成的氧化镁和二氧化钛粉末中获得的,这些粉末分别掺杂了不同浓度的锰离子。利用 XRD、STEM、拉曼、PL、XPS 和 EPR 光谱对得到的以 MgTiO3 为主相的多相材料进行了全面的形态结构分析。电化学结果表明,由于 EPR 和 PL 光谱中显示的高缺陷浓度以及 XPS 和 XRD 中观察到的铁电行为,它们在用作超级电容器电极材料时表现出卓越的性能。在对称和非对称超级电容器装置中使用时,它们显示出良好的效果,对称装置的比容量值高达 109 F/g,非对称装置的比容量值高达 609 F/g,能量密度和功率密度值分别达到 84.7 Wh/kg 和 90.8 kW/kg,证明了它们在储能领域的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supercapacitor devices based on multiphase MgTiO3 perovskites doped with Mn2+ ions
Recently, perovskites have become a hotspot for researchers attempting to exploit metal and oxygen vacancies in structures of the form MTiO3, facilitating the convenient electron/hole migration, thus displaying interesting properties. Magnesium Titanate (MgTiO3) is a prominent part of the perovskite class, exhibiting remarkable electrical, thermal, and chemical properties. Undoped and Mn-doped MgTiO3 samples were obtained using a solid-state reaction starting from previously synthesized MgO and TiO2 powders, which were separately doped with different Mn ion concentrations. The resulting multiphase materials with a major MgTiO3 phase were thoroughly morpho-structurally analyzed employing XRD, STEM, Raman, PL, XPS, and EPR spectroscopy. The electrochemical results indicate that they show superior performance when used as electrode materials for supercapacitor application due to the high defect concentration as shown in EPR and PL spectroscopy and the ferroelectric behavior observed in XPS and XRD. When used in symmetric and asymmetric supercapacitor devices, they show promising results, with specific capacity values reaching up to 109 F/g for the symmetric and 609 F/g for the asymmetric devices, while energy and power density values reached 84.7 Wh/kg and 90.8 kW/kg respectively, proving a great potential in the energy storage field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信