{"title":"利用草炭硅合成的介孔 SBA-15 上支撑的铁赤铁矿-磁铁矿复合材料作为苯酚羟基化过程中的固体催化剂","authors":"Sittichai kulawong , Pinit Kidkhunthod , Narong Chanlek , Jatuporn Wittayakun , Nattawut Osakoo","doi":"10.1016/j.matchemphys.2024.130057","DOIUrl":null,"url":null,"abstract":"<div><div>Phenol hydroxylation involves the oxidation of phenol (C<sub>6</sub>H<sub>5</sub>OH) using hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to yield benzenediol (C<sub>6</sub>H<sub>4</sub>(OH)<sub>2</sub>), mainly catechol (CTL) and hydroquinone (HQ). These products are in high demand in the pharmaceuticals industry sector. Thus, it is still worth investigating for further improvement in terms of heterogeneous iron catalysts. Herein, this research focuses on an iron hematite (Fe<sub>2</sub>O<sub>3</sub>)-magnetite (Fe<sub>3</sub>O<sub>4</sub>) composite catalyst supported on SBA-15 using silica from cogon grass for phenol hydroxylation. The extracted silica exhibited a fine white powder appearance and an amorphous structure, used as a silica source for SBA-15 synthesis. After catalyst preparation, the presence of Fe<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4,</sub> and Fe<sub>2</sub>O<sub>3</sub>–Fe<sub>3</sub>O<sub>4</sub> composite on SBA-15 was confirmed by using X-ray absorption near-edge structure (XANES). X-ray photoelectron spectroscopy (XPS) analysis provided insights into the surface of the catalyst, revealing that Fe<sub>2</sub>O<sub>3</sub>–Fe<sub>3</sub>O<sub>4</sub>/SBA-15 had the highest dispersion of iron species. In terms of catalytic performance, Fe<sub>2</sub>O<sub>3</sub>–Fe<sub>3</sub>O<sub>4</sub>/SBA-15 displayed the highest conversion of 88 % and HQ selectivity of 46 % compared with lone Fe<sub>3</sub>O<sub>4</sub>/SBA-15 or Fe<sub>2</sub>O<sub>3</sub>/SBA-15. The magnetic separation approach demonstrated the easy separation of catalysts containing Fe<sub>3</sub>O<sub>4</sub>. Reusability studies showed that Fe<sub>2</sub>O<sub>3</sub>–Fe<sub>3</sub>O<sub>4</sub>/SBA-15 maintained its activity up to the 4th cycle, suggesting minimized iron leaching compared to Fe<sub>3</sub>O<sub>4</sub>/SBA-15. Overall, this study provides insights into the catalytic performance of phenol hydroxylation and iron-based catalysts, emphasizing the potential of Fe<sub>2</sub>O<sub>3</sub>–Fe<sub>3</sub>O<sub>4</sub>/SBA-15 as an effective and reusable catalyst.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130057"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron hematite-magnetite composite supported on mesoporous SBA-15 synthesized by using silica from cogon grass as a solid catalyst in phenol hydroxylation\",\"authors\":\"Sittichai kulawong , Pinit Kidkhunthod , Narong Chanlek , Jatuporn Wittayakun , Nattawut Osakoo\",\"doi\":\"10.1016/j.matchemphys.2024.130057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phenol hydroxylation involves the oxidation of phenol (C<sub>6</sub>H<sub>5</sub>OH) using hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to yield benzenediol (C<sub>6</sub>H<sub>4</sub>(OH)<sub>2</sub>), mainly catechol (CTL) and hydroquinone (HQ). These products are in high demand in the pharmaceuticals industry sector. Thus, it is still worth investigating for further improvement in terms of heterogeneous iron catalysts. Herein, this research focuses on an iron hematite (Fe<sub>2</sub>O<sub>3</sub>)-magnetite (Fe<sub>3</sub>O<sub>4</sub>) composite catalyst supported on SBA-15 using silica from cogon grass for phenol hydroxylation. The extracted silica exhibited a fine white powder appearance and an amorphous structure, used as a silica source for SBA-15 synthesis. After catalyst preparation, the presence of Fe<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4,</sub> and Fe<sub>2</sub>O<sub>3</sub>–Fe<sub>3</sub>O<sub>4</sub> composite on SBA-15 was confirmed by using X-ray absorption near-edge structure (XANES). X-ray photoelectron spectroscopy (XPS) analysis provided insights into the surface of the catalyst, revealing that Fe<sub>2</sub>O<sub>3</sub>–Fe<sub>3</sub>O<sub>4</sub>/SBA-15 had the highest dispersion of iron species. In terms of catalytic performance, Fe<sub>2</sub>O<sub>3</sub>–Fe<sub>3</sub>O<sub>4</sub>/SBA-15 displayed the highest conversion of 88 % and HQ selectivity of 46 % compared with lone Fe<sub>3</sub>O<sub>4</sub>/SBA-15 or Fe<sub>2</sub>O<sub>3</sub>/SBA-15. The magnetic separation approach demonstrated the easy separation of catalysts containing Fe<sub>3</sub>O<sub>4</sub>. Reusability studies showed that Fe<sub>2</sub>O<sub>3</sub>–Fe<sub>3</sub>O<sub>4</sub>/SBA-15 maintained its activity up to the 4th cycle, suggesting minimized iron leaching compared to Fe<sub>3</sub>O<sub>4</sub>/SBA-15. Overall, this study provides insights into the catalytic performance of phenol hydroxylation and iron-based catalysts, emphasizing the potential of Fe<sub>2</sub>O<sub>3</sub>–Fe<sub>3</sub>O<sub>4</sub>/SBA-15 as an effective and reusable catalyst.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"329 \",\"pages\":\"Article 130057\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058424011854\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424011854","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Iron hematite-magnetite composite supported on mesoporous SBA-15 synthesized by using silica from cogon grass as a solid catalyst in phenol hydroxylation
Phenol hydroxylation involves the oxidation of phenol (C6H5OH) using hydrogen peroxide (H2O2) to yield benzenediol (C6H4(OH)2), mainly catechol (CTL) and hydroquinone (HQ). These products are in high demand in the pharmaceuticals industry sector. Thus, it is still worth investigating for further improvement in terms of heterogeneous iron catalysts. Herein, this research focuses on an iron hematite (Fe2O3)-magnetite (Fe3O4) composite catalyst supported on SBA-15 using silica from cogon grass for phenol hydroxylation. The extracted silica exhibited a fine white powder appearance and an amorphous structure, used as a silica source for SBA-15 synthesis. After catalyst preparation, the presence of Fe2O3, Fe3O4, and Fe2O3–Fe3O4 composite on SBA-15 was confirmed by using X-ray absorption near-edge structure (XANES). X-ray photoelectron spectroscopy (XPS) analysis provided insights into the surface of the catalyst, revealing that Fe2O3–Fe3O4/SBA-15 had the highest dispersion of iron species. In terms of catalytic performance, Fe2O3–Fe3O4/SBA-15 displayed the highest conversion of 88 % and HQ selectivity of 46 % compared with lone Fe3O4/SBA-15 or Fe2O3/SBA-15. The magnetic separation approach demonstrated the easy separation of catalysts containing Fe3O4. Reusability studies showed that Fe2O3–Fe3O4/SBA-15 maintained its activity up to the 4th cycle, suggesting minimized iron leaching compared to Fe3O4/SBA-15. Overall, this study provides insights into the catalytic performance of phenol hydroxylation and iron-based catalysts, emphasizing the potential of Fe2O3–Fe3O4/SBA-15 as an effective and reusable catalyst.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.