{"title":"应对网络安全决策支持中的不确定性","authors":"Yunxiao Zhang , Pasquale Malacaria","doi":"10.1016/j.cose.2024.104153","DOIUrl":null,"url":null,"abstract":"<div><div>The mathematical modeling of cybersecurity decision-making heavily relies on cybersecurity metrics. However, achieving precision in these metrics is notoriously challenging, and their inaccuracies can significantly influence model outcomes. This paper explores resilience to uncertainties in the effectiveness of security controls. We employ probabilistic attack graphs to model threats and introduce two resilient models: minmax regret and min-product of risks, comparing their performance.</div><div>Building on previous Stackelberg game models for cybersecurity, our approach leverages totally unimodular matrices and linear programming (LP) duality to provide efficient solutions. While minmax regret is a well-known approach in robust optimization, our extensive simulations indicate that, in this context, the lesser-known min-product of risks offers superior resilience.</div><div>To demonstrate the practical utility and robustness of our framework, we include a multi-dimensional decision support case study focused on home IoT cybersecurity investments, highlighting specific insights and outcomes. This study illustrates the framework’s effectiveness in real-world settings.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"148 ","pages":"Article 104153"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dealing with uncertainty in cybersecurity decision support\",\"authors\":\"Yunxiao Zhang , Pasquale Malacaria\",\"doi\":\"10.1016/j.cose.2024.104153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mathematical modeling of cybersecurity decision-making heavily relies on cybersecurity metrics. However, achieving precision in these metrics is notoriously challenging, and their inaccuracies can significantly influence model outcomes. This paper explores resilience to uncertainties in the effectiveness of security controls. We employ probabilistic attack graphs to model threats and introduce two resilient models: minmax regret and min-product of risks, comparing their performance.</div><div>Building on previous Stackelberg game models for cybersecurity, our approach leverages totally unimodular matrices and linear programming (LP) duality to provide efficient solutions. While minmax regret is a well-known approach in robust optimization, our extensive simulations indicate that, in this context, the lesser-known min-product of risks offers superior resilience.</div><div>To demonstrate the practical utility and robustness of our framework, we include a multi-dimensional decision support case study focused on home IoT cybersecurity investments, highlighting specific insights and outcomes. This study illustrates the framework’s effectiveness in real-world settings.</div></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":\"148 \",\"pages\":\"Article 104153\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404824004589\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824004589","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Dealing with uncertainty in cybersecurity decision support
The mathematical modeling of cybersecurity decision-making heavily relies on cybersecurity metrics. However, achieving precision in these metrics is notoriously challenging, and their inaccuracies can significantly influence model outcomes. This paper explores resilience to uncertainties in the effectiveness of security controls. We employ probabilistic attack graphs to model threats and introduce two resilient models: minmax regret and min-product of risks, comparing their performance.
Building on previous Stackelberg game models for cybersecurity, our approach leverages totally unimodular matrices and linear programming (LP) duality to provide efficient solutions. While minmax regret is a well-known approach in robust optimization, our extensive simulations indicate that, in this context, the lesser-known min-product of risks offers superior resilience.
To demonstrate the practical utility and robustness of our framework, we include a multi-dimensional decision support case study focused on home IoT cybersecurity investments, highlighting specific insights and outcomes. This study illustrates the framework’s effectiveness in real-world settings.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.