基于听觉仿生学的电池更换系统驱动装置故障诊断

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Hang Yuan , Hao Wu , Jiacheng Li , Kai Zhang , Huijuan Zhang , Xiaowen You , Xianglong You
{"title":"基于听觉仿生学的电池更换系统驱动装置故障诊断","authors":"Hang Yuan ,&nbsp;Hao Wu ,&nbsp;Jiacheng Li ,&nbsp;Kai Zhang ,&nbsp;Huijuan Zhang ,&nbsp;Xiaowen You ,&nbsp;Xianglong You","doi":"10.1016/j.engappai.2024.109525","DOIUrl":null,"url":null,"abstract":"<div><div>Rack and pinion drives (RPD) are widely used in battery swapping system (BSS) for electric heavy trucks (EHT), and due to the continuous heavy-load and high-intensity operation, along with the electric erosion, the gears in the RPD are always damaged, which causes unexpected consequences such as downtime or safety incidents. The working conditions of the RPD in BSS include uncertain noises, fluctuant and low speed, which pose steep challenges to accurate fault diagnosis. Considering the auditory resistance of interference, the low-frequency sensitivity of auditory perception, and the auditory saliency mechanism, to leverage the advantages of auditory perceptual mechanism in addressing the above challenges, as the contribution in artificial intelligence, we propose an entire vibration signal processing scheme based on auditory bionics, including some mathematical models for auditory mechanisms. For the application in engineering, the proposed scheme is employed for fault diagnosis of RPD in BSS in unique working conditions. First, adaptive resampling is used to smooth the speed fluctuation, then, Gammatone filters are employed to transform vibration signals to cochleograms, after that, based on auditory stream segregation and selective attention mechanisms, effective frequency channels and salient features are extracted from the cochleograms, besides, to improve the diagnosis accuracy, binaural features are also extracted, finally, based on (sectional) sparse representation and fusion, fault diagnosis is achieved. The effectiveness of the fault diagnosis scheme is demonstrated using a BSS prototype system.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault diagnosis of driving gear in battery swapping system based on auditory bionics\",\"authors\":\"Hang Yuan ,&nbsp;Hao Wu ,&nbsp;Jiacheng Li ,&nbsp;Kai Zhang ,&nbsp;Huijuan Zhang ,&nbsp;Xiaowen You ,&nbsp;Xianglong You\",\"doi\":\"10.1016/j.engappai.2024.109525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rack and pinion drives (RPD) are widely used in battery swapping system (BSS) for electric heavy trucks (EHT), and due to the continuous heavy-load and high-intensity operation, along with the electric erosion, the gears in the RPD are always damaged, which causes unexpected consequences such as downtime or safety incidents. The working conditions of the RPD in BSS include uncertain noises, fluctuant and low speed, which pose steep challenges to accurate fault diagnosis. Considering the auditory resistance of interference, the low-frequency sensitivity of auditory perception, and the auditory saliency mechanism, to leverage the advantages of auditory perceptual mechanism in addressing the above challenges, as the contribution in artificial intelligence, we propose an entire vibration signal processing scheme based on auditory bionics, including some mathematical models for auditory mechanisms. For the application in engineering, the proposed scheme is employed for fault diagnosis of RPD in BSS in unique working conditions. First, adaptive resampling is used to smooth the speed fluctuation, then, Gammatone filters are employed to transform vibration signals to cochleograms, after that, based on auditory stream segregation and selective attention mechanisms, effective frequency channels and salient features are extracted from the cochleograms, besides, to improve the diagnosis accuracy, binaural features are also extracted, finally, based on (sectional) sparse representation and fusion, fault diagnosis is achieved. The effectiveness of the fault diagnosis scheme is demonstrated using a BSS prototype system.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095219762401683X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095219762401683X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

齿轮齿条传动装置(RPD)广泛应用于电动重型卡车(EHT)的电池交换系统(BSS)中,由于连续的重负荷和高强度运行,再加上电能的侵蚀,RPD 中的齿轮总是会损坏,从而导致停机或安全事故等意想不到的后果。在 BSS 中,RPD 的工作条件包括不确定噪声、波动和低速,这给准确的故障诊断带来了巨大挑战。考虑到听觉的抗干扰性、听觉感知的低频灵敏性以及听觉突出机制,为了利用听觉感知机制的优势应对上述挑战,作为人工智能领域的贡献,我们提出了基于听觉仿生学的整体振动信号处理方案,包括一些听觉机制的数学模型。在工程应用方面,所提出的方案被用于在特殊工作条件下对 BSS 中的 RPD 进行故障诊断。首先,使用自适应重采样来平滑速度波动,然后,使用伽马通滤波器将振动信号转换为耳蜗图,之后,基于听觉流分离和选择性注意机制,从耳蜗图中提取有效频率通道和显著特征,此外,为了提高诊断准确性,还提取了双耳特征,最后,基于(截面)稀疏表示和融合,实现故障诊断。故障诊断方案的有效性通过一个 BSS 原型系统得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault diagnosis of driving gear in battery swapping system based on auditory bionics
Rack and pinion drives (RPD) are widely used in battery swapping system (BSS) for electric heavy trucks (EHT), and due to the continuous heavy-load and high-intensity operation, along with the electric erosion, the gears in the RPD are always damaged, which causes unexpected consequences such as downtime or safety incidents. The working conditions of the RPD in BSS include uncertain noises, fluctuant and low speed, which pose steep challenges to accurate fault diagnosis. Considering the auditory resistance of interference, the low-frequency sensitivity of auditory perception, and the auditory saliency mechanism, to leverage the advantages of auditory perceptual mechanism in addressing the above challenges, as the contribution in artificial intelligence, we propose an entire vibration signal processing scheme based on auditory bionics, including some mathematical models for auditory mechanisms. For the application in engineering, the proposed scheme is employed for fault diagnosis of RPD in BSS in unique working conditions. First, adaptive resampling is used to smooth the speed fluctuation, then, Gammatone filters are employed to transform vibration signals to cochleograms, after that, based on auditory stream segregation and selective attention mechanisms, effective frequency channels and salient features are extracted from the cochleograms, besides, to improve the diagnosis accuracy, binaural features are also extracted, finally, based on (sectional) sparse representation and fusion, fault diagnosis is achieved. The effectiveness of the fault diagnosis scheme is demonstrated using a BSS prototype system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信