Tao Zhang , Liyuan Yu , Jiangbo Wei , Hai Pu , Qinghe Zhang , Lihua Hu , Xianzhen Mi
{"title":"隧道周围岩石在单轴荷载作用下的应力演变:PFC3D-GBM 建模和力链分析的启示","authors":"Tao Zhang , Liyuan Yu , Jiangbo Wei , Hai Pu , Qinghe Zhang , Lihua Hu , Xianzhen Mi","doi":"10.1016/j.tafmec.2024.104728","DOIUrl":null,"url":null,"abstract":"<div><div>In underground engineerings, the evolution of the stress state in the surrounding rocks can effectively reveal its fracture mechanism. To precisely describe this microscopic information, the present study utilizes the three-dimensional Grain-based model based on Particle Flow Code (PFC3D-GBM) to construct a square numerical specimen with a pre-existing hole representing a tunnel and subjected it to uniaxial loading. In this model, different types of mineral structures and internal force chain networks are distinguished at a three-dimensional scale. Furthermore, the evolution of force chain networks in the top, bottom, left and right regions around the tunnel is quantitatively characterized. The anti-fracture capability depending on stress state of various structures is calculated and then the fracture mechanism from the point of anti-fracture capability is discussed. The research results indicate that at at the beginning of loading, some red force chains with higher level have appeared on both sides of the tunnel. As the load goes on, red force chain network extending from both sides of the tunnel to the upper and lower ends of the specimen have emerged. The average value and sum value of all force chains show an increasing trend before the peak load and a decreasing trend after the peak load. The average value of force chains within a specific structure can accurately reflect the microscopic mechanical properties of that structure. The average values of force chains on the left and right sides of the tunnel are higher, both in terms of starting points and ascending rates, than those in the upper and lower regions of the tunnel. The orientation distribution of all force chains is relatively uniform, but force chains with higher level are generally align with the loading direction. The fundamental reason for the high degree of fragmentation on the left and right sides of the tunnel is that these regions bear more external load than the upper and lower regions, rather than being inherently more prone to fracture.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"134 ","pages":"Article 104728"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress evolution in rocks around tunnel under uniaxial loading: Insights from PFC3D-GBM modelling and force chain analysis\",\"authors\":\"Tao Zhang , Liyuan Yu , Jiangbo Wei , Hai Pu , Qinghe Zhang , Lihua Hu , Xianzhen Mi\",\"doi\":\"10.1016/j.tafmec.2024.104728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In underground engineerings, the evolution of the stress state in the surrounding rocks can effectively reveal its fracture mechanism. To precisely describe this microscopic information, the present study utilizes the three-dimensional Grain-based model based on Particle Flow Code (PFC3D-GBM) to construct a square numerical specimen with a pre-existing hole representing a tunnel and subjected it to uniaxial loading. In this model, different types of mineral structures and internal force chain networks are distinguished at a three-dimensional scale. Furthermore, the evolution of force chain networks in the top, bottom, left and right regions around the tunnel is quantitatively characterized. The anti-fracture capability depending on stress state of various structures is calculated and then the fracture mechanism from the point of anti-fracture capability is discussed. The research results indicate that at at the beginning of loading, some red force chains with higher level have appeared on both sides of the tunnel. As the load goes on, red force chain network extending from both sides of the tunnel to the upper and lower ends of the specimen have emerged. The average value and sum value of all force chains show an increasing trend before the peak load and a decreasing trend after the peak load. The average value of force chains within a specific structure can accurately reflect the microscopic mechanical properties of that structure. The average values of force chains on the left and right sides of the tunnel are higher, both in terms of starting points and ascending rates, than those in the upper and lower regions of the tunnel. The orientation distribution of all force chains is relatively uniform, but force chains with higher level are generally align with the loading direction. The fundamental reason for the high degree of fragmentation on the left and right sides of the tunnel is that these regions bear more external load than the upper and lower regions, rather than being inherently more prone to fracture.</div></div>\",\"PeriodicalId\":22879,\"journal\":{\"name\":\"Theoretical and Applied Fracture Mechanics\",\"volume\":\"134 \",\"pages\":\"Article 104728\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167844224004786\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224004786","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Stress evolution in rocks around tunnel under uniaxial loading: Insights from PFC3D-GBM modelling and force chain analysis
In underground engineerings, the evolution of the stress state in the surrounding rocks can effectively reveal its fracture mechanism. To precisely describe this microscopic information, the present study utilizes the three-dimensional Grain-based model based on Particle Flow Code (PFC3D-GBM) to construct a square numerical specimen with a pre-existing hole representing a tunnel and subjected it to uniaxial loading. In this model, different types of mineral structures and internal force chain networks are distinguished at a three-dimensional scale. Furthermore, the evolution of force chain networks in the top, bottom, left and right regions around the tunnel is quantitatively characterized. The anti-fracture capability depending on stress state of various structures is calculated and then the fracture mechanism from the point of anti-fracture capability is discussed. The research results indicate that at at the beginning of loading, some red force chains with higher level have appeared on both sides of the tunnel. As the load goes on, red force chain network extending from both sides of the tunnel to the upper and lower ends of the specimen have emerged. The average value and sum value of all force chains show an increasing trend before the peak load and a decreasing trend after the peak load. The average value of force chains within a specific structure can accurately reflect the microscopic mechanical properties of that structure. The average values of force chains on the left and right sides of the tunnel are higher, both in terms of starting points and ascending rates, than those in the upper and lower regions of the tunnel. The orientation distribution of all force chains is relatively uniform, but force chains with higher level are generally align with the loading direction. The fundamental reason for the high degree of fragmentation on the left and right sides of the tunnel is that these regions bear more external load than the upper and lower regions, rather than being inherently more prone to fracture.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.