无网格法框架下用于解决断裂问题的高效计算元素边缘点数值积分方案

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Sai Naga Kishore Vutla , Thamarai Selvan Vasu , Jeyakarthikeyan P.V.
{"title":"无网格法框架下用于解决断裂问题的高效计算元素边缘点数值积分方案","authors":"Sai Naga Kishore Vutla ,&nbsp;Thamarai Selvan Vasu ,&nbsp;Jeyakarthikeyan P.V.","doi":"10.1016/j.tafmec.2024.104704","DOIUrl":null,"url":null,"abstract":"<div><div>The fracture problem is modeled using the Radial Point Interpolation Meshless Method (RPIM) to solve for displacements. Further, the stresses and Stress Intensity Factor (SIF) are calculated using obtained displacements. An effective numerical integral quadrature called the Element Edge point(EE) scheme is used as an alternative to conventional Gauss Quadrature to improve computational efficiency. A comparative study based on two numerical integration schemes, the Element Edge point scheme and Gauss Quadrature, is conducted on four benchmark problems of thick, cracked plates owing to plane strain conditions. The study reveals that the proposed Element Edge point (EE) scheme is computationally efficient and works well in the meshless method framework.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computationally efficient Element Edge point numerical integration scheme in the meshless method framework for solving fracture problems\",\"authors\":\"Sai Naga Kishore Vutla ,&nbsp;Thamarai Selvan Vasu ,&nbsp;Jeyakarthikeyan P.V.\",\"doi\":\"10.1016/j.tafmec.2024.104704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fracture problem is modeled using the Radial Point Interpolation Meshless Method (RPIM) to solve for displacements. Further, the stresses and Stress Intensity Factor (SIF) are calculated using obtained displacements. An effective numerical integral quadrature called the Element Edge point(EE) scheme is used as an alternative to conventional Gauss Quadrature to improve computational efficiency. A comparative study based on two numerical integration schemes, the Element Edge point scheme and Gauss Quadrature, is conducted on four benchmark problems of thick, cracked plates owing to plane strain conditions. The study reveals that the proposed Element Edge point (EE) scheme is computationally efficient and works well in the meshless method framework.</div></div>\",\"PeriodicalId\":22879,\"journal\":{\"name\":\"Theoretical and Applied Fracture Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167844224004543\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224004543","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

断裂问题采用径向点插值无网格法(RPIM)建模,以求解位移。此外,应力和应力强度因子(SIF)也是通过求得的位移计算得出的。为提高计算效率,采用了一种名为 "元素边缘点(EE)"的有效数值积分正交方案,以替代传统的高斯正交方案。基于元素边缘点方案和高斯四则运算这两种数值积分方案,对四个平面应变条件下开裂厚板的基准问题进行了比较研究。研究结果表明,所提出的元素边缘点(EE)方案计算效率高,在无网格法框架下运行良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computationally efficient Element Edge point numerical integration scheme in the meshless method framework for solving fracture problems
The fracture problem is modeled using the Radial Point Interpolation Meshless Method (RPIM) to solve for displacements. Further, the stresses and Stress Intensity Factor (SIF) are calculated using obtained displacements. An effective numerical integral quadrature called the Element Edge point(EE) scheme is used as an alternative to conventional Gauss Quadrature to improve computational efficiency. A comparative study based on two numerical integration schemes, the Element Edge point scheme and Gauss Quadrature, is conducted on four benchmark problems of thick, cracked plates owing to plane strain conditions. The study reveals that the proposed Element Edge point (EE) scheme is computationally efficient and works well in the meshless method framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信