Fenglong Cai , Dong Yuan , Zhe Yang , Yonghui Xu , Wei He , Wei Guo , Lizhen Cui
{"title":"FastPTM:快速加载预训练模型的权重以提供并行推理服务","authors":"Fenglong Cai , Dong Yuan , Zhe Yang , Yonghui Xu , Wei He , Wei Guo , Lizhen Cui","doi":"10.1016/j.parco.2024.103114","DOIUrl":null,"url":null,"abstract":"<div><div>Pre-trained models (PTMs) have demonstrated great success in a variety of NLP and CV tasks and have become a significant development in the field of deep learning. However, the large memory and high computational requirements associated with PTMs can increase the cost and time of inference, limiting their service provisioning in practical applications. To improve the Quality of Service (QoS) of PTM applications by reducing waiting and response times, we propose the FastPTM framework. This general framework aims to accelerate PTM inference services in a multi-tenant environment by reducing model loading time and switching overhead on GPUs. The framework utilizes a fast weights loading method based on weights and model separation of PTMs to efficiently accelerate parallel inference services in resource-constrained environments. Furthermore, an online scheduling algorithm is designed to reduce the inference service time. The results of the experiments indicate that FastPTM can improve the throughput of inference services by an average of 4x and up to 8.2x, while reducing the number of switches by 4.7x and the number of overtimes by 15.3x.</div></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"122 ","pages":"Article 103114"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FastPTM: Fast weights loading of pre-trained models for parallel inference service provisioning\",\"authors\":\"Fenglong Cai , Dong Yuan , Zhe Yang , Yonghui Xu , Wei He , Wei Guo , Lizhen Cui\",\"doi\":\"10.1016/j.parco.2024.103114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pre-trained models (PTMs) have demonstrated great success in a variety of NLP and CV tasks and have become a significant development in the field of deep learning. However, the large memory and high computational requirements associated with PTMs can increase the cost and time of inference, limiting their service provisioning in practical applications. To improve the Quality of Service (QoS) of PTM applications by reducing waiting and response times, we propose the FastPTM framework. This general framework aims to accelerate PTM inference services in a multi-tenant environment by reducing model loading time and switching overhead on GPUs. The framework utilizes a fast weights loading method based on weights and model separation of PTMs to efficiently accelerate parallel inference services in resource-constrained environments. Furthermore, an online scheduling algorithm is designed to reduce the inference service time. The results of the experiments indicate that FastPTM can improve the throughput of inference services by an average of 4x and up to 8.2x, while reducing the number of switches by 4.7x and the number of overtimes by 15.3x.</div></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"122 \",\"pages\":\"Article 103114\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819124000528\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000528","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
FastPTM: Fast weights loading of pre-trained models for parallel inference service provisioning
Pre-trained models (PTMs) have demonstrated great success in a variety of NLP and CV tasks and have become a significant development in the field of deep learning. However, the large memory and high computational requirements associated with PTMs can increase the cost and time of inference, limiting their service provisioning in practical applications. To improve the Quality of Service (QoS) of PTM applications by reducing waiting and response times, we propose the FastPTM framework. This general framework aims to accelerate PTM inference services in a multi-tenant environment by reducing model loading time and switching overhead on GPUs. The framework utilizes a fast weights loading method based on weights and model separation of PTMs to efficiently accelerate parallel inference services in resource-constrained environments. Furthermore, an online scheduling algorithm is designed to reduce the inference service time. The results of the experiments indicate that FastPTM can improve the throughput of inference services by an average of 4x and up to 8.2x, while reducing the number of switches by 4.7x and the number of overtimes by 15.3x.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications