{"title":"MIDAS:具有决策优化功能的多层攻击检测架构","authors":"Kieran Rendall , Alexios Mylonas , Stilianos Vidalis , Dimitris Gritzalis","doi":"10.1016/j.cose.2024.104154","DOIUrl":null,"url":null,"abstract":"<div><div>The proliferation of cyber attacks has led to the use of data-driven detection countermeasures, in an effort to mitigate this threat. Machine learning techniques, such as the use of neural networks, have become mainstream and proven effective in attack detection. However, these data-driven solutions are limited by: <em>a)</em> high computational overhead associated with data pre-processing and inference cost, <em>b)</em> inability to scale beyond a centralised deployment to cope with environmental variances, and c) requirement to use multiple bespoke detection models for effective attack detection coverage across the cyber kill chain. In this context, this paper introduces MIDAS, a cost-effective framework for attack detection, which introduces a dynamic decision boundary that is used in a multi-layered detection architecture. This is achieved by modelling the decision confidence of the participating detection models and judging its benefits using a novel reward policy. Specifically, a reward is assigned to a set of available actions, corresponding to a decision boundary, based on its cost-to-performance, where an <em>overall</em> cost-saving is prioritised. We evaluate our approach on two widely used datasets representing two of the most common threats today, <em>i.e.,</em> phishing and malware. MIDAS shows that it effectively reduces the expenditure on detection inference and processing costs by controlling the frequency of expensive detection operations. This is achieved without significant sacrifice of attack detection performance.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MIDAS: Multi-layered attack detection architecture with decision optimisation\",\"authors\":\"Kieran Rendall , Alexios Mylonas , Stilianos Vidalis , Dimitris Gritzalis\",\"doi\":\"10.1016/j.cose.2024.104154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The proliferation of cyber attacks has led to the use of data-driven detection countermeasures, in an effort to mitigate this threat. Machine learning techniques, such as the use of neural networks, have become mainstream and proven effective in attack detection. However, these data-driven solutions are limited by: <em>a)</em> high computational overhead associated with data pre-processing and inference cost, <em>b)</em> inability to scale beyond a centralised deployment to cope with environmental variances, and c) requirement to use multiple bespoke detection models for effective attack detection coverage across the cyber kill chain. In this context, this paper introduces MIDAS, a cost-effective framework for attack detection, which introduces a dynamic decision boundary that is used in a multi-layered detection architecture. This is achieved by modelling the decision confidence of the participating detection models and judging its benefits using a novel reward policy. Specifically, a reward is assigned to a set of available actions, corresponding to a decision boundary, based on its cost-to-performance, where an <em>overall</em> cost-saving is prioritised. We evaluate our approach on two widely used datasets representing two of the most common threats today, <em>i.e.,</em> phishing and malware. MIDAS shows that it effectively reduces the expenditure on detection inference and processing costs by controlling the frequency of expensive detection operations. This is achieved without significant sacrifice of attack detection performance.</div></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404824004590\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824004590","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
MIDAS: Multi-layered attack detection architecture with decision optimisation
The proliferation of cyber attacks has led to the use of data-driven detection countermeasures, in an effort to mitigate this threat. Machine learning techniques, such as the use of neural networks, have become mainstream and proven effective in attack detection. However, these data-driven solutions are limited by: a) high computational overhead associated with data pre-processing and inference cost, b) inability to scale beyond a centralised deployment to cope with environmental variances, and c) requirement to use multiple bespoke detection models for effective attack detection coverage across the cyber kill chain. In this context, this paper introduces MIDAS, a cost-effective framework for attack detection, which introduces a dynamic decision boundary that is used in a multi-layered detection architecture. This is achieved by modelling the decision confidence of the participating detection models and judging its benefits using a novel reward policy. Specifically, a reward is assigned to a set of available actions, corresponding to a decision boundary, based on its cost-to-performance, where an overall cost-saving is prioritised. We evaluate our approach on two widely used datasets representing two of the most common threats today, i.e., phishing and malware. MIDAS shows that it effectively reduces the expenditure on detection inference and processing costs by controlling the frequency of expensive detection operations. This is achieved without significant sacrifice of attack detection performance.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.