奇数素数下的布朗-彼得森谱不是 E2(p2+2)

IF 1.5 1区 数学 Q1 MATHEMATICS
Andrew Senger
{"title":"奇数素数下的布朗-彼得森谱不是 E2(p2+2)","authors":"Andrew Senger","doi":"10.1016/j.aim.2024.109996","DOIUrl":null,"url":null,"abstract":"<div><div>We show that the odd-primary Brown-Peterson spectrum BP does not admit the structure of an <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mo>)</mo></mrow></msub></math></span> ring spectrum and that there can be no map <span><math><mrow><mi>MU</mi></mrow><mo>→</mo><mrow><mi>BP</mi></mrow></math></span> of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>3</mn></mrow></msub></math></span> ring spectra. We also prove the same results for truncated Brown-Peterson spectra <span><math><mrow><mi>BP</mi></mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></math></span> of height <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. This extends results of Lawson at the prime 2.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109996"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Brown-Peterson spectrum is not E2(p2+2) at odd primes\",\"authors\":\"Andrew Senger\",\"doi\":\"10.1016/j.aim.2024.109996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that the odd-primary Brown-Peterson spectrum BP does not admit the structure of an <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mo>)</mo></mrow></msub></math></span> ring spectrum and that there can be no map <span><math><mrow><mi>MU</mi></mrow><mo>→</mo><mrow><mi>BP</mi></mrow></math></span> of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>3</mn></mrow></msub></math></span> ring spectra. We also prove the same results for truncated Brown-Peterson spectra <span><math><mrow><mi>BP</mi></mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></math></span> of height <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. This extends results of Lawson at the prime 2.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109996\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824005127\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005127","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明奇初布朗-彼得森谱 BP 不具有 E2(p2+2) 环谱的结构,并且不可能存在 E2p+3 环谱的映射 MU→BP。我们还证明了高度为 n≥4 的截断布朗-彼得森谱 BP〈n〉的相同结果。这扩展了劳森在素数 2 时的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Brown-Peterson spectrum is not E2(p2+2) at odd primes
We show that the odd-primary Brown-Peterson spectrum BP does not admit the structure of an E2(p2+2) ring spectrum and that there can be no map MUBP of E2p+3 ring spectra. We also prove the same results for truncated Brown-Peterson spectra BPn of height n4. This extends results of Lawson at the prime 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信