扭曲群环的单元及其与经典群环的关联

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Geoffrey Janssens , Eric Jespers , Ofir Schnabel
{"title":"扭曲群环的单元及其与经典群环的关联","authors":"Geoffrey Janssens ,&nbsp;Eric Jespers ,&nbsp;Ofir Schnabel","doi":"10.1016/j.aim.2024.109983","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is centred around the classical problem of extracting properties of a finite group <em>G</em> from the ring isomorphism class of its integral group ring <span><math><mi>Z</mi><mi>G</mi></math></span>. This problem is considered via describing the unit group <span><math><mi>U</mi><mo>(</mo><mi>Z</mi><mi>G</mi><mo>)</mo></math></span> generically for a finite group. Since the ‘90<em>s</em>’ several well known generic constructions of units are known to generate a subgroup of finite index in <span><math><mi>U</mi><mo>(</mo><mi>Z</mi><mi>G</mi><mo>)</mo></math></span> if <span><math><mi>Q</mi><mi>G</mi></math></span> does not have so-called exceptional simple epimorphic images, e.g. <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Q</mi><mo>)</mo></math></span>. However it remained a major open problem to find a <em>generic</em> construction under the presence of the latter type of simple images. In this article we obtain such generic construction of units. Moreover, this new construction also exhibits new properties, such as providing generically free subgroups of large rank. As an application we answer positively for several classes of groups recent conjectures on the rank and the periodic elements of the abelianisation <span><math><mi>U</mi><msup><mrow><mo>(</mo><mi>Z</mi><mi>G</mi><mo>)</mo></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msup></math></span>. To obtain all this, we investigate the group ring <em>R</em>Γ of an extension Γ of some normal subgroup <em>N</em> by a group <em>G</em>, over a domain <em>R</em>. More precisely, we obtain a direct sum decomposition of the (twisted) group algebra of Γ over the fraction field <em>F</em> of <em>R</em> in terms of various twisted group rings of <em>G</em> over finite extensions of <em>F</em>. Furthermore, concrete information on the kernel and cokernel of the associated projections is obtained. Along the way we also launch the investigations of the unit group of twisted group rings and of <span><math><mi>U</mi><mo>(</mo><mi>R</mi><mi>Γ</mi><mo>)</mo></math></span> via twisted group rings.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Units of twisted group rings and their correlations to classical group rings\",\"authors\":\"Geoffrey Janssens ,&nbsp;Eric Jespers ,&nbsp;Ofir Schnabel\",\"doi\":\"10.1016/j.aim.2024.109983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is centred around the classical problem of extracting properties of a finite group <em>G</em> from the ring isomorphism class of its integral group ring <span><math><mi>Z</mi><mi>G</mi></math></span>. This problem is considered via describing the unit group <span><math><mi>U</mi><mo>(</mo><mi>Z</mi><mi>G</mi><mo>)</mo></math></span> generically for a finite group. Since the ‘90<em>s</em>’ several well known generic constructions of units are known to generate a subgroup of finite index in <span><math><mi>U</mi><mo>(</mo><mi>Z</mi><mi>G</mi><mo>)</mo></math></span> if <span><math><mi>Q</mi><mi>G</mi></math></span> does not have so-called exceptional simple epimorphic images, e.g. <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Q</mi><mo>)</mo></math></span>. However it remained a major open problem to find a <em>generic</em> construction under the presence of the latter type of simple images. In this article we obtain such generic construction of units. Moreover, this new construction also exhibits new properties, such as providing generically free subgroups of large rank. As an application we answer positively for several classes of groups recent conjectures on the rank and the periodic elements of the abelianisation <span><math><mi>U</mi><msup><mrow><mo>(</mo><mi>Z</mi><mi>G</mi><mo>)</mo></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msup></math></span>. To obtain all this, we investigate the group ring <em>R</em>Γ of an extension Γ of some normal subgroup <em>N</em> by a group <em>G</em>, over a domain <em>R</em>. More precisely, we obtain a direct sum decomposition of the (twisted) group algebra of Γ over the fraction field <em>F</em> of <em>R</em> in terms of various twisted group rings of <em>G</em> over finite extensions of <em>F</em>. Furthermore, concrete information on the kernel and cokernel of the associated projections is obtained. Along the way we also launch the investigations of the unit group of twisted group rings and of <span><math><mi>U</mi><mo>(</mo><mi>R</mi><mi>Γ</mi><mo>)</mo></math></span> via twisted group rings.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004997\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004997","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文围绕一个经典问题展开,即从有限群 G 的积分群环 ZG 的环同构类中提取有限群 G 的性质。这个问题是通过描述有限群的单位群 U(ZG) 来考虑的。自上世纪 90 年代以来,如果 QG 没有所谓的特殊简单外貌像(如 M2(Q)),已知的几种单位泛函构造可以在 U(ZG)中生成一个有限索引的子群。然而,在存在后一类简单映像的情况下,如何找到通用构造仍是一个重大的未决问题。在本文中,我们得到了这种单位的一般构造。此外,这种新构造还表现出新的特性,如提供大等级的泛自由子群。作为应用,我们正面回答了最近关于无秩化 U(ZG)ab 的秩和周期元素的几类群的猜想。为了实现这一切,我们研究了某个正则子群 N 由一个群 G 在一个域 R 上的扩展 Γ 的群环 RΓ。更确切地说,我们根据 G 在 F 的有限扩展上的各种扭曲群环,得到了 Γ 在 R 的分数域 F 上的(扭曲)群代数的直接和分解。同时,我们还通过扭曲群环展开了对扭曲群环的单位群和 U(RΓ) 的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Units of twisted group rings and their correlations to classical group rings
This paper is centred around the classical problem of extracting properties of a finite group G from the ring isomorphism class of its integral group ring ZG. This problem is considered via describing the unit group U(ZG) generically for a finite group. Since the ‘90s’ several well known generic constructions of units are known to generate a subgroup of finite index in U(ZG) if QG does not have so-called exceptional simple epimorphic images, e.g. M2(Q). However it remained a major open problem to find a generic construction under the presence of the latter type of simple images. In this article we obtain such generic construction of units. Moreover, this new construction also exhibits new properties, such as providing generically free subgroups of large rank. As an application we answer positively for several classes of groups recent conjectures on the rank and the periodic elements of the abelianisation U(ZG)ab. To obtain all this, we investigate the group ring RΓ of an extension Γ of some normal subgroup N by a group G, over a domain R. More precisely, we obtain a direct sum decomposition of the (twisted) group algebra of Γ over the fraction field F of R in terms of various twisted group rings of G over finite extensions of F. Furthermore, concrete information on the kernel and cokernel of the associated projections is obtained. Along the way we also launch the investigations of the unit group of twisted group rings and of U(RΓ) via twisted group rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信