有限群不变环的弗罗贝尼斯代表类型

IF 1.5 1区 数学 Q1 MATHEMATICS
Mitsuyasu Hashimoto , Anurag K. Singh
{"title":"有限群不变环的弗罗贝尼斯代表类型","authors":"Mitsuyasu Hashimoto ,&nbsp;Anurag K. Singh","doi":"10.1016/j.aim.2024.109978","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>V</em> be a finite rank vector space over a perfect field of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>, and let <em>G</em> be a finite subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>. If <em>V</em> is a permutation representation of <em>G</em>, or more generally a monomial representation, we prove that the ring of invariants <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> has finite Frobenius representation type. We also construct an example with <em>V</em> a finite rank vector space over the algebraic closure of the function field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, and <em>G</em> an elementary abelian subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, such that the invariant ring <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> does not have finite Frobenius representation type.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109978"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frobenius representation type for invariant rings of finite groups\",\"authors\":\"Mitsuyasu Hashimoto ,&nbsp;Anurag K. Singh\",\"doi\":\"10.1016/j.aim.2024.109978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>V</em> be a finite rank vector space over a perfect field of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>, and let <em>G</em> be a finite subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>. If <em>V</em> is a permutation representation of <em>G</em>, or more generally a monomial representation, we prove that the ring of invariants <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> has finite Frobenius representation type. We also construct an example with <em>V</em> a finite rank vector space over the algebraic closure of the function field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, and <em>G</em> an elementary abelian subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, such that the invariant ring <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> does not have finite Frobenius representation type.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109978\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004948\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004948","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 V 是特征 p>0 的完全域上的有限秩向量空间,设 G 是 GL(V) 的有限子群。如果 V 是 G 的置换表示,或者更一般地说是单项式表示,我们将证明不变式环 (SymV)G 具有有限的弗罗贝尼斯表示类型。我们还构建了一个例子,V 是函数场 F3(t) 代数闭合上的有限秩向量空间,G 是 GL(V) 的基本无性子群,这样不变环 (SymV)G 就不具有有限弗罗贝尼斯表示类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frobenius representation type for invariant rings of finite groups
Let V be a finite rank vector space over a perfect field of characteristic p>0, and let G be a finite subgroup of GL(V). If V is a permutation representation of G, or more generally a monomial representation, we prove that the ring of invariants (SymV)G has finite Frobenius representation type. We also construct an example with V a finite rank vector space over the algebraic closure of the function field F3(t), and G an elementary abelian subgroup of GL(V), such that the invariant ring (SymV)G does not have finite Frobenius representation type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信