{"title":"有限群不变环的弗罗贝尼斯代表类型","authors":"Mitsuyasu Hashimoto , Anurag K. Singh","doi":"10.1016/j.aim.2024.109978","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>V</em> be a finite rank vector space over a perfect field of characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, and let <em>G</em> be a finite subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>. If <em>V</em> is a permutation representation of <em>G</em>, or more generally a monomial representation, we prove that the ring of invariants <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> has finite Frobenius representation type. We also construct an example with <em>V</em> a finite rank vector space over the algebraic closure of the function field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, and <em>G</em> an elementary abelian subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, such that the invariant ring <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> does not have finite Frobenius representation type.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109978"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frobenius representation type for invariant rings of finite groups\",\"authors\":\"Mitsuyasu Hashimoto , Anurag K. Singh\",\"doi\":\"10.1016/j.aim.2024.109978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>V</em> be a finite rank vector space over a perfect field of characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, and let <em>G</em> be a finite subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>. If <em>V</em> is a permutation representation of <em>G</em>, or more generally a monomial representation, we prove that the ring of invariants <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> has finite Frobenius representation type. We also construct an example with <em>V</em> a finite rank vector space over the algebraic closure of the function field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, and <em>G</em> an elementary abelian subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, such that the invariant ring <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> does not have finite Frobenius representation type.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109978\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004948\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004948","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 V 是特征 p>0 的完全域上的有限秩向量空间,设 G 是 GL(V) 的有限子群。如果 V 是 G 的置换表示,或者更一般地说是单项式表示,我们将证明不变式环 (SymV)G 具有有限的弗罗贝尼斯表示类型。我们还构建了一个例子,V 是函数场 F3(t) 代数闭合上的有限秩向量空间,G 是 GL(V) 的基本无性子群,这样不变环 (SymV)G 就不具有有限弗罗贝尼斯表示类型。
Frobenius representation type for invariant rings of finite groups
Let V be a finite rank vector space over a perfect field of characteristic , and let G be a finite subgroup of . If V is a permutation representation of G, or more generally a monomial representation, we prove that the ring of invariants has finite Frobenius representation type. We also construct an example with V a finite rank vector space over the algebraic closure of the function field , and G an elementary abelian subgroup of , such that the invariant ring does not have finite Frobenius representation type.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.