{"title":"有限群不变环的弗罗贝尼斯代表类型","authors":"Mitsuyasu Hashimoto , Anurag K. Singh","doi":"10.1016/j.aim.2024.109978","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>V</em> be a finite rank vector space over a perfect field of characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, and let <em>G</em> be a finite subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>. If <em>V</em> is a permutation representation of <em>G</em>, or more generally a monomial representation, we prove that the ring of invariants <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> has finite Frobenius representation type. We also construct an example with <em>V</em> a finite rank vector space over the algebraic closure of the function field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, and <em>G</em> an elementary abelian subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, such that the invariant ring <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> does not have finite Frobenius representation type.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frobenius representation type for invariant rings of finite groups\",\"authors\":\"Mitsuyasu Hashimoto , Anurag K. Singh\",\"doi\":\"10.1016/j.aim.2024.109978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>V</em> be a finite rank vector space over a perfect field of characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, and let <em>G</em> be a finite subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>. If <em>V</em> is a permutation representation of <em>G</em>, or more generally a monomial representation, we prove that the ring of invariants <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> has finite Frobenius representation type. We also construct an example with <em>V</em> a finite rank vector space over the algebraic closure of the function field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, and <em>G</em> an elementary abelian subgroup of <span><math><mi>GL</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span>, such that the invariant ring <span><math><msup><mrow><mo>(</mo><mi>Sym</mi><mspace></mspace><mi>V</mi><mo>)</mo></mrow><mrow><mi>G</mi></mrow></msup></math></span> does not have finite Frobenius representation type.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004948\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004948","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
设 V 是特征 p>0 的完全域上的有限秩向量空间,设 G 是 GL(V) 的有限子群。如果 V 是 G 的置换表示,或者更一般地说是单项式表示,我们将证明不变式环 (SymV)G 具有有限的弗罗贝尼斯表示类型。我们还构建了一个例子,V 是函数场 F3(t) 代数闭合上的有限秩向量空间,G 是 GL(V) 的基本无性子群,这样不变环 (SymV)G 就不具有有限弗罗贝尼斯表示类型。
Frobenius representation type for invariant rings of finite groups
Let V be a finite rank vector space over a perfect field of characteristic , and let G be a finite subgroup of . If V is a permutation representation of G, or more generally a monomial representation, we prove that the ring of invariants has finite Frobenius representation type. We also construct an example with V a finite rank vector space over the algebraic closure of the function field , and G an elementary abelian subgroup of , such that the invariant ring does not have finite Frobenius representation type.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.