米尔诺-维特动机同调与线性代数群

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Keyao Peng
{"title":"米尔诺-维特动机同调与线性代数群","authors":"Keyao Peng","doi":"10.1016/j.aim.2024.109973","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents two key computations in MW-motivic cohomology. Firstly, we compute the MW-motivic cohomology of the symplectic groups <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span> for any <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> using the Sp-orientation and the associated Borel classes.</div><div>Secondly, following the classical computations and using the analogue in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-homotopy of the Leray spectral sequence, we compute the <em>η</em>-inverted MW-motivic cohomology of general Stiefel varieties, obtaining in particular the computation of the <em>η</em>-inverted MW-motivic cohomology of the general linear groups <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the special linear groups <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for any <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>.</div><div>Finally, we determine the multiplicative structures of these total cohomology groups.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Milnor-Witt motivic cohomology and linear algebraic groups\",\"authors\":\"Keyao Peng\",\"doi\":\"10.1016/j.aim.2024.109973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article presents two key computations in MW-motivic cohomology. Firstly, we compute the MW-motivic cohomology of the symplectic groups <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span> for any <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> using the Sp-orientation and the associated Borel classes.</div><div>Secondly, following the classical computations and using the analogue in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-homotopy of the Leray spectral sequence, we compute the <em>η</em>-inverted MW-motivic cohomology of general Stiefel varieties, obtaining in particular the computation of the <em>η</em>-inverted MW-motivic cohomology of the general linear groups <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the special linear groups <span><math><msub><mrow><mi>SL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for any <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>.</div><div>Finally, we determine the multiplicative structures of these total cohomology groups.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004882\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004882","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 MW 动同调的两个关键计算。首先,对于任意 n∈N 的交映群 Sp2n,我们利用 Sp 方向和相关的伯勒类计算其 MW 动同调。其次,我们按照经典计算方法,利用李雷谱序列在 A1-同调中的类比,计算了一般 Stiefel varieties 的 η-反转 MW-动同调,特别是计算了一般线性群 GLn 和特殊线性群 SLn 对于任意 n∈N 的 η-反转 MW-动同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Milnor-Witt motivic cohomology and linear algebraic groups
This article presents two key computations in MW-motivic cohomology. Firstly, we compute the MW-motivic cohomology of the symplectic groups Sp2n for any nN using the Sp-orientation and the associated Borel classes.
Secondly, following the classical computations and using the analogue in A1-homotopy of the Leray spectral sequence, we compute the η-inverted MW-motivic cohomology of general Stiefel varieties, obtaining in particular the computation of the η-inverted MW-motivic cohomology of the general linear groups GLn and the special linear groups SLn for any nN.
Finally, we determine the multiplicative structures of these total cohomology groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信