连续时间静止过程的混合正交图

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Vicky Fasen-Hartmann, Lea Schenk
{"title":"连续时间静止过程的混合正交图","authors":"Vicky Fasen-Hartmann,&nbsp;Lea Schenk","doi":"10.1016/j.spa.2024.104501","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce different concepts of Granger causality and contemporaneous correlation for multivariate stationary continuous-time processes to model different dependencies between the component processes. Several equivalent characterisations are given for the different definitions, in particular by orthogonal projections. We then define two mixed graphs based on different definitions of Granger causality and contemporaneous correlation, the (mixed) orthogonality graph and the local (mixed) orthogonality graph. In these graphs, the components of the process are represented by vertices, directed edges between the vertices visualise Granger causal influences and undirected edges visualise contemporaneous correlation between the component processes. Further, we introduce various notions of Markov properties in analogy to Eichler (2012), which relate paths in the graphs to different dependence structures of subprocesses, and we derive sufficient criteria for the (local) orthogonality graph to satisfy them. Finally, as an example, for the popular multivariate continuous-time AR (MCAR) processes, we explicitly characterise the edges in the (local) orthogonality graph by the model parameters.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104501"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed orthogonality graphs for continuous-time stationary processes\",\"authors\":\"Vicky Fasen-Hartmann,&nbsp;Lea Schenk\",\"doi\":\"10.1016/j.spa.2024.104501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce different concepts of Granger causality and contemporaneous correlation for multivariate stationary continuous-time processes to model different dependencies between the component processes. Several equivalent characterisations are given for the different definitions, in particular by orthogonal projections. We then define two mixed graphs based on different definitions of Granger causality and contemporaneous correlation, the (mixed) orthogonality graph and the local (mixed) orthogonality graph. In these graphs, the components of the process are represented by vertices, directed edges between the vertices visualise Granger causal influences and undirected edges visualise contemporaneous correlation between the component processes. Further, we introduce various notions of Markov properties in analogy to Eichler (2012), which relate paths in the graphs to different dependence structures of subprocesses, and we derive sufficient criteria for the (local) orthogonality graph to satisfy them. Finally, as an example, for the popular multivariate continuous-time AR (MCAR) processes, we explicitly characterise the edges in the (local) orthogonality graph by the model parameters.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"179 \",\"pages\":\"Article 104501\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924002096\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002096","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为多变量静态连续时间过程引入了不同的格兰杰因果关系和同期相关性概念,以模拟各组成过程之间的不同依赖关系。本文给出了不同定义的几种等效特征,特别是正交投影。然后,我们根据格兰杰因果关系和同期相关性的不同定义定义了两种混合图,即(混合)正交图和局部(混合)正交图。在这些图中,流程的各组成部分由顶点表示,顶点之间的有向边表示格兰杰因果影响,无向边表示各组成部分流程之间的同期相关性。此外,我们还引入了与 Eichler(2012 年)类似的马尔可夫特性的各种概念,这些概念将图中的路径与子过程的不同依赖结构联系起来,并推导出(局部)正交图满足这些概念的充分标准。最后,以流行的多变量连续时间自回归(MCAR)过程为例,我们通过模型参数明确描述了(局部)正交图中的边。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed orthogonality graphs for continuous-time stationary processes
In this paper, we introduce different concepts of Granger causality and contemporaneous correlation for multivariate stationary continuous-time processes to model different dependencies between the component processes. Several equivalent characterisations are given for the different definitions, in particular by orthogonal projections. We then define two mixed graphs based on different definitions of Granger causality and contemporaneous correlation, the (mixed) orthogonality graph and the local (mixed) orthogonality graph. In these graphs, the components of the process are represented by vertices, directed edges between the vertices visualise Granger causal influences and undirected edges visualise contemporaneous correlation between the component processes. Further, we introduce various notions of Markov properties in analogy to Eichler (2012), which relate paths in the graphs to different dependence structures of subprocesses, and we derive sufficient criteria for the (local) orthogonality graph to satisfy them. Finally, as an example, for the popular multivariate continuous-time AR (MCAR) processes, we explicitly characterise the edges in the (local) orthogonality graph by the model parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信