有价差的波动资产的金融随机斯特凡问题的最大解的存在性

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
D.C. Antonopoulou , D. Farazakis , G. Karali
{"title":"有价差的波动资产的金融随机斯特凡问题的最大解的存在性","authors":"D.C. Antonopoulou ,&nbsp;D. Farazakis ,&nbsp;G. Karali","doi":"10.1016/j.spa.2024.104506","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we consider the outer Stefan problem for the short-time prediction of the spread of a volatile asset traded in a financial market. The stochastic equation for the evolution of the density of sell and buy orders is the Heat Equation with a space–time white noise, posed in a moving boundary domain with velocity given by the Stefan condition. This condition determines the dynamics of the spread, and the solid phase <span><math><mrow><mo>[</mo><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msup><mrow><mi>s</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>]</mo></mrow></math></span> defines the bid–ask spread area wherein the transactions vanish. We introduce a reflection measure and prove existence and uniqueness of maximal solutions up to stopping times in which the spread <span><math><mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> stays a.s. non-negative and bounded. For this, we define an approximation scheme, and use some of the estimates of Hambly et al. (2020) for the Green’s function and the associated to the reflection measure obstacle problem. Analogous results are obtained for the equation without reflection corresponding to a signed density.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104506"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of maximal solutions for the financial stochastic Stefan problem of a volatile asset with spread\",\"authors\":\"D.C. Antonopoulou ,&nbsp;D. Farazakis ,&nbsp;G. Karali\",\"doi\":\"10.1016/j.spa.2024.104506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we consider the outer Stefan problem for the short-time prediction of the spread of a volatile asset traded in a financial market. The stochastic equation for the evolution of the density of sell and buy orders is the Heat Equation with a space–time white noise, posed in a moving boundary domain with velocity given by the Stefan condition. This condition determines the dynamics of the spread, and the solid phase <span><math><mrow><mo>[</mo><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msup><mrow><mi>s</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>]</mo></mrow></math></span> defines the bid–ask spread area wherein the transactions vanish. We introduce a reflection measure and prove existence and uniqueness of maximal solutions up to stopping times in which the spread <span><math><mrow><msup><mrow><mi>s</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> stays a.s. non-negative and bounded. For this, we define an approximation scheme, and use some of the estimates of Hambly et al. (2020) for the Green’s function and the associated to the reflection measure obstacle problem. Analogous results are obtained for the equation without reflection corresponding to a signed density.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"179 \",\"pages\":\"Article 104506\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030441492400214X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030441492400214X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们考虑的是金融市场波动资产价差短期预测的外斯特凡问题。卖出和买入订单密度演化的随机方程是带有时空白噪声的热方程,在移动边界域中提出,其速度由斯特凡条件给出。该条件决定了价差的动态变化,而实体相 [s-(t),s+(t)] 则定义了交易消失的买卖价差区域。我们引入了一种反射量度,并证明了最大解的存在性和唯一性,直至价差 s+(t)-s-(t)保持非负且有界的停止时间。为此,我们定义了一个近似方案,并使用了 Hambly 等人(2020 年)对格林函数的一些估计以及与反射量障碍问题相关的估计。对于与有符号密度相对应的无反射方程,我们也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of maximal solutions for the financial stochastic Stefan problem of a volatile asset with spread
In this work, we consider the outer Stefan problem for the short-time prediction of the spread of a volatile asset traded in a financial market. The stochastic equation for the evolution of the density of sell and buy orders is the Heat Equation with a space–time white noise, posed in a moving boundary domain with velocity given by the Stefan condition. This condition determines the dynamics of the spread, and the solid phase [s(t),s+(t)] defines the bid–ask spread area wherein the transactions vanish. We introduce a reflection measure and prove existence and uniqueness of maximal solutions up to stopping times in which the spread s+(t)s(t) stays a.s. non-negative and bounded. For this, we define an approximation scheme, and use some of the estimates of Hambly et al. (2020) for the Green’s function and the associated to the reflection measure obstacle problem. Analogous results are obtained for the equation without reflection corresponding to a signed density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信