{"title":"椭圆扩散和相互作用粒子系统欧拉方案的 L2-Wasserstein 收缩","authors":"Linshan Liu , Mateusz B. Majka , Pierre Monmarché","doi":"10.1016/j.spa.2024.104504","DOIUrl":null,"url":null,"abstract":"<div><div>We show <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction for the transition kernel of a discretised diffusion process, under a contractivity at infinity condition on the drift and a sufficiently high diffusivity requirement. This extends recent results that, under similar assumptions on the drift but without the diffusivity restrictions, showed <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Wasserstein contraction, or <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-Wasserstein bounds for <span><math><mrow><mi>p</mi><mo>></mo><mn>1</mn></mrow></math></span> that were, however, not true contractions. We explain how showing a true <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction is crucial for obtaining a local Poincaré inequality for the transition kernel of the Euler scheme of a diffusion. Moreover, we discuss other consequences of our contraction results, such as concentration inequalities and convergence rates in KL-divergence and total variation. We also study corresponding <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction for discretisations of interacting diffusions. As a particular application, this allows us to analyse the behaviour of particle systems that can be used to approximate a class of McKean-Vlasov SDEs that were recently studied in the mean-field optimisation literature.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104504"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L2-Wasserstein contraction for Euler schemes of elliptic diffusions and interacting particle systems\",\"authors\":\"Linshan Liu , Mateusz B. Majka , Pierre Monmarché\",\"doi\":\"10.1016/j.spa.2024.104504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction for the transition kernel of a discretised diffusion process, under a contractivity at infinity condition on the drift and a sufficiently high diffusivity requirement. This extends recent results that, under similar assumptions on the drift but without the diffusivity restrictions, showed <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Wasserstein contraction, or <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-Wasserstein bounds for <span><math><mrow><mi>p</mi><mo>></mo><mn>1</mn></mrow></math></span> that were, however, not true contractions. We explain how showing a true <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction is crucial for obtaining a local Poincaré inequality for the transition kernel of the Euler scheme of a diffusion. Moreover, we discuss other consequences of our contraction results, such as concentration inequalities and convergence rates in KL-divergence and total variation. We also study corresponding <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction for discretisations of interacting diffusions. As a particular application, this allows us to analyse the behaviour of particle systems that can be used to approximate a class of McKean-Vlasov SDEs that were recently studied in the mean-field optimisation literature.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"179 \",\"pages\":\"Article 104504\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924002126\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002126","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
L2-Wasserstein contraction for Euler schemes of elliptic diffusions and interacting particle systems
We show -Wasserstein contraction for the transition kernel of a discretised diffusion process, under a contractivity at infinity condition on the drift and a sufficiently high diffusivity requirement. This extends recent results that, under similar assumptions on the drift but without the diffusivity restrictions, showed -Wasserstein contraction, or -Wasserstein bounds for that were, however, not true contractions. We explain how showing a true -Wasserstein contraction is crucial for obtaining a local Poincaré inequality for the transition kernel of the Euler scheme of a diffusion. Moreover, we discuss other consequences of our contraction results, such as concentration inequalities and convergence rates in KL-divergence and total variation. We also study corresponding -Wasserstein contraction for discretisations of interacting diffusions. As a particular application, this allows us to analyse the behaviour of particle systems that can be used to approximate a class of McKean-Vlasov SDEs that were recently studied in the mean-field optimisation literature.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.