椭圆扩散和相互作用粒子系统欧拉方案的 L2-Wasserstein 收缩

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Linshan Liu , Mateusz B. Majka , Pierre Monmarché
{"title":"椭圆扩散和相互作用粒子系统欧拉方案的 L2-Wasserstein 收缩","authors":"Linshan Liu ,&nbsp;Mateusz B. Majka ,&nbsp;Pierre Monmarché","doi":"10.1016/j.spa.2024.104504","DOIUrl":null,"url":null,"abstract":"<div><div>We show <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction for the transition kernel of a discretised diffusion process, under a contractivity at infinity condition on the drift and a sufficiently high diffusivity requirement. This extends recent results that, under similar assumptions on the drift but without the diffusivity restrictions, showed <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Wasserstein contraction, or <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-Wasserstein bounds for <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> that were, however, not true contractions. We explain how showing a true <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction is crucial for obtaining a local Poincaré inequality for the transition kernel of the Euler scheme of a diffusion. Moreover, we discuss other consequences of our contraction results, such as concentration inequalities and convergence rates in KL-divergence and total variation. We also study corresponding <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction for discretisations of interacting diffusions. As a particular application, this allows us to analyse the behaviour of particle systems that can be used to approximate a class of McKean-Vlasov SDEs that were recently studied in the mean-field optimisation literature.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104504"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L2-Wasserstein contraction for Euler schemes of elliptic diffusions and interacting particle systems\",\"authors\":\"Linshan Liu ,&nbsp;Mateusz B. Majka ,&nbsp;Pierre Monmarché\",\"doi\":\"10.1016/j.spa.2024.104504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction for the transition kernel of a discretised diffusion process, under a contractivity at infinity condition on the drift and a sufficiently high diffusivity requirement. This extends recent results that, under similar assumptions on the drift but without the diffusivity restrictions, showed <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Wasserstein contraction, or <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-Wasserstein bounds for <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> that were, however, not true contractions. We explain how showing a true <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction is crucial for obtaining a local Poincaré inequality for the transition kernel of the Euler scheme of a diffusion. Moreover, we discuss other consequences of our contraction results, such as concentration inequalities and convergence rates in KL-divergence and total variation. We also study corresponding <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-Wasserstein contraction for discretisations of interacting diffusions. As a particular application, this allows us to analyse the behaviour of particle systems that can be used to approximate a class of McKean-Vlasov SDEs that were recently studied in the mean-field optimisation literature.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"179 \",\"pages\":\"Article 104504\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924002126\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002126","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在漂移的无穷收缩性条件和足够高的扩散性要求下,我们证明了离散化扩散过程过渡核的 L2-Wasserstein 收缩。这扩展了最近的一些结果,这些结果在漂移的类似假设下,显示了 L1-Wasserstein 收缩,或 p>1 的 Lp-Wasserstein 边界,但这并不是真正的收缩。我们解释了显示真正的 L2-Wasserstein 收缩对于获得扩散的欧拉方案过渡核的局部波恩卡列不等式是如何至关重要的。此外,我们还讨论了我们的收缩结果的其他后果,如 KL-发散和总变异的集中不等式和收敛率。我们还研究了相互作用扩散离散的相应 L2-Wasserstein 收缩。作为一个特殊的应用,这使我们能够分析粒子系统的行为,这些粒子系统可以用来近似最近在均值场优化文献中研究的一类麦肯-弗拉索夫 SDEs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L2-Wasserstein contraction for Euler schemes of elliptic diffusions and interacting particle systems
We show L2-Wasserstein contraction for the transition kernel of a discretised diffusion process, under a contractivity at infinity condition on the drift and a sufficiently high diffusivity requirement. This extends recent results that, under similar assumptions on the drift but without the diffusivity restrictions, showed L1-Wasserstein contraction, or Lp-Wasserstein bounds for p>1 that were, however, not true contractions. We explain how showing a true L2-Wasserstein contraction is crucial for obtaining a local Poincaré inequality for the transition kernel of the Euler scheme of a diffusion. Moreover, we discuss other consequences of our contraction results, such as concentration inequalities and convergence rates in KL-divergence and total variation. We also study corresponding L2-Wasserstein contraction for discretisations of interacting diffusions. As a particular application, this allows us to analyse the behaviour of particle systems that can be used to approximate a class of McKean-Vlasov SDEs that were recently studied in the mean-field optimisation literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信