{"title":"量化聚合物涂层颗粒和表面相互作用的实验技术:材料设计和优化的启示","authors":"Yinan Li, To Ngai","doi":"10.1016/j.chphma.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer-coated particles and surfaces have widespread applications in various industries ranging from manufacturing to biomedicine. A better understanding of the stability mechanisms underlying these coatings can inspire the design of novel polymer structures and help tune their functions. This can be achieved by quantifying the particle-particle and particle-surface interactions. This paper reviews several common experimental techniques utilized to measure the interactions between polymer-coated particles and surfaces quantitatively. These techniques include atomic force microscopy (AFM), total internal reflection microscopy (TIRM), optical tweezers (OT), and quartz crystal microbalance with dissipation monitoring (QCM-D). The examples of each measuring technique were categorized based on the types of polymer coatings and their associated factors. Additionally, this review demonstrates experimental measurements of interactions involving biological objects. By understanding the fundamental particle-particle and particle-surface interactions, researchers can gain valuable insights to guide the design and functional optimization of polymer-based materials and systems across various applications.</div></div>","PeriodicalId":100236,"journal":{"name":"ChemPhysMater","volume":"3 4","pages":"Pages 376-387"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental techniques for quantifying interactions of polymer-coated particles and surfaces: Insights for material design and optimization\",\"authors\":\"Yinan Li, To Ngai\",\"doi\":\"10.1016/j.chphma.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polymer-coated particles and surfaces have widespread applications in various industries ranging from manufacturing to biomedicine. A better understanding of the stability mechanisms underlying these coatings can inspire the design of novel polymer structures and help tune their functions. This can be achieved by quantifying the particle-particle and particle-surface interactions. This paper reviews several common experimental techniques utilized to measure the interactions between polymer-coated particles and surfaces quantitatively. These techniques include atomic force microscopy (AFM), total internal reflection microscopy (TIRM), optical tweezers (OT), and quartz crystal microbalance with dissipation monitoring (QCM-D). The examples of each measuring technique were categorized based on the types of polymer coatings and their associated factors. Additionally, this review demonstrates experimental measurements of interactions involving biological objects. By understanding the fundamental particle-particle and particle-surface interactions, researchers can gain valuable insights to guide the design and functional optimization of polymer-based materials and systems across various applications.</div></div>\",\"PeriodicalId\":100236,\"journal\":{\"name\":\"ChemPhysMater\",\"volume\":\"3 4\",\"pages\":\"Pages 376-387\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhysMater\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772571524000457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhysMater","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772571524000457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental techniques for quantifying interactions of polymer-coated particles and surfaces: Insights for material design and optimization
Polymer-coated particles and surfaces have widespread applications in various industries ranging from manufacturing to biomedicine. A better understanding of the stability mechanisms underlying these coatings can inspire the design of novel polymer structures and help tune their functions. This can be achieved by quantifying the particle-particle and particle-surface interactions. This paper reviews several common experimental techniques utilized to measure the interactions between polymer-coated particles and surfaces quantitatively. These techniques include atomic force microscopy (AFM), total internal reflection microscopy (TIRM), optical tweezers (OT), and quartz crystal microbalance with dissipation monitoring (QCM-D). The examples of each measuring technique were categorized based on the types of polymer coatings and their associated factors. Additionally, this review demonstrates experimental measurements of interactions involving biological objects. By understanding the fundamental particle-particle and particle-surface interactions, researchers can gain valuable insights to guide the design and functional optimization of polymer-based materials and systems across various applications.