混合自主排布控制的参数隐私保护策略

IF 7.6 1区 工程技术 Q1 TRANSPORTATION SCIENCE & TECHNOLOGY
Jingyuan Zhou, Kaidi Yang
{"title":"混合自主排布控制的参数隐私保护策略","authors":"Jingyuan Zhou,&nbsp;Kaidi Yang","doi":"10.1016/j.trc.2024.104885","DOIUrl":null,"url":null,"abstract":"<div><div>It has been demonstrated that leading cruise control (LCC) can improve the operation of mixed-autonomy platoons by allowing connected and automated vehicles (CAVs) to make longitudinal control decisions based on the information provided by surrounding vehicles. However, LCC generally requires surrounding human-driven vehicles (HDVs) to share their real-time states, which can be used by adversaries to infer drivers’ car-following behavior, potentially leading to financial losses or safety concerns. This paper aims to address such privacy concerns and protect the behavioral characteristics of HDVs by devising a parameter privacy-preserving approach for mixed-autonomy platoon control. First, we integrate a parameter privacy filter into LCC to protect sensitive car-following parameters. The privacy filter allows each vehicle to generate seemingly realistic pseudo states by distorting the true parameters to pseudo parameters, which can protect drivers’ privacy in behavioral parameters without significantly influencing the control performance. Second, to enhance the reliability and practicality of the privacy filter within LCC, we first introduce an individual-level parameter privacy preservation constraint to the privacy filter, focusing on the privacy level of each individual parameter pair. Subsequently, we extend the current approach to accommodate continuous parameter spaces through a neural network estimator. Third, analysis of head-to-tail string stability reveals the potential impact of privacy filters in degrading mixed traffic flow performance. Simulation shows that this approach can effectively trade off privacy and control performance in LCC. We further demonstrate the benefit of such an approach in networked systems, i.e., by applying the privacy filter to a preceding vehicle, one can also achieve a certain level of privacy for the following vehicle.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A parameter privacy-preserving strategy for mixed-autonomy platoon control\",\"authors\":\"Jingyuan Zhou,&nbsp;Kaidi Yang\",\"doi\":\"10.1016/j.trc.2024.104885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It has been demonstrated that leading cruise control (LCC) can improve the operation of mixed-autonomy platoons by allowing connected and automated vehicles (CAVs) to make longitudinal control decisions based on the information provided by surrounding vehicles. However, LCC generally requires surrounding human-driven vehicles (HDVs) to share their real-time states, which can be used by adversaries to infer drivers’ car-following behavior, potentially leading to financial losses or safety concerns. This paper aims to address such privacy concerns and protect the behavioral characteristics of HDVs by devising a parameter privacy-preserving approach for mixed-autonomy platoon control. First, we integrate a parameter privacy filter into LCC to protect sensitive car-following parameters. The privacy filter allows each vehicle to generate seemingly realistic pseudo states by distorting the true parameters to pseudo parameters, which can protect drivers’ privacy in behavioral parameters without significantly influencing the control performance. Second, to enhance the reliability and practicality of the privacy filter within LCC, we first introduce an individual-level parameter privacy preservation constraint to the privacy filter, focusing on the privacy level of each individual parameter pair. Subsequently, we extend the current approach to accommodate continuous parameter spaces through a neural network estimator. Third, analysis of head-to-tail string stability reveals the potential impact of privacy filters in degrading mixed traffic flow performance. Simulation shows that this approach can effectively trade off privacy and control performance in LCC. We further demonstrate the benefit of such an approach in networked systems, i.e., by applying the privacy filter to a preceding vehicle, one can also achieve a certain level of privacy for the following vehicle.</div></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X24004066\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24004066","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

已有研究表明,领先巡航控制(LCC)允许互联自动驾驶车辆(CAV)根据周围车辆提供的信息做出纵向控制决策,从而改善混合自动驾驶车队的运行状况。然而,LCC 通常要求周围的人类驾驶车辆(HDV)共享其实时状态,这可能会被对手用来推断驾驶员的跟车行为,从而可能导致经济损失或安全问题。本文旨在解决此类隐私问题,并保护 HDV 的行为特征,为此设计了一种参数隐私保护方法,用于混合自主排序控制。首先,我们将参数隐私过滤器集成到 LCC 中,以保护敏感的汽车跟随参数。隐私滤波器允许每辆车通过将真实参数扭曲为伪参数来生成看似真实的伪状态,从而在不明显影响控制性能的情况下保护驾驶员的行为参数隐私。其次,为了提高隐私滤波器在 LCC 中的可靠性和实用性,我们首先为隐私滤波器引入了个体级参数隐私保护约束,重点关注每个个体参数对的隐私级别。随后,我们通过神经网络估计器扩展了当前方法,以适应连续参数空间。第三,头尾串稳定性分析揭示了隐私过滤器在降低混合流量性能方面的潜在影响。仿真显示,这种方法可以有效地在 LCC 中权衡隐私和控制性能。我们进一步证明了这种方法在网络系统中的优势,即通过对前一辆车应用隐私过滤器,也能为后一辆车实现一定程度的隐私保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parameter privacy-preserving strategy for mixed-autonomy platoon control
It has been demonstrated that leading cruise control (LCC) can improve the operation of mixed-autonomy platoons by allowing connected and automated vehicles (CAVs) to make longitudinal control decisions based on the information provided by surrounding vehicles. However, LCC generally requires surrounding human-driven vehicles (HDVs) to share their real-time states, which can be used by adversaries to infer drivers’ car-following behavior, potentially leading to financial losses or safety concerns. This paper aims to address such privacy concerns and protect the behavioral characteristics of HDVs by devising a parameter privacy-preserving approach for mixed-autonomy platoon control. First, we integrate a parameter privacy filter into LCC to protect sensitive car-following parameters. The privacy filter allows each vehicle to generate seemingly realistic pseudo states by distorting the true parameters to pseudo parameters, which can protect drivers’ privacy in behavioral parameters without significantly influencing the control performance. Second, to enhance the reliability and practicality of the privacy filter within LCC, we first introduce an individual-level parameter privacy preservation constraint to the privacy filter, focusing on the privacy level of each individual parameter pair. Subsequently, we extend the current approach to accommodate continuous parameter spaces through a neural network estimator. Third, analysis of head-to-tail string stability reveals the potential impact of privacy filters in degrading mixed traffic flow performance. Simulation shows that this approach can effectively trade off privacy and control performance in LCC. We further demonstrate the benefit of such an approach in networked systems, i.e., by applying the privacy filter to a preceding vehicle, one can also achieve a certain level of privacy for the following vehicle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.80
自引率
12.00%
发文量
332
审稿时长
64 days
期刊介绍: Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信