有依赖误差的周期向量自回归时间序列模型的诊断检查

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Yacouba Boubacar Maïnassara , Eugen Ursu
{"title":"有依赖误差的周期向量自回归时间序列模型的诊断检查","authors":"Yacouba Boubacar Maïnassara ,&nbsp;Eugen Ursu","doi":"10.1016/j.jmva.2024.105379","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we study the asymptotic behavior of the residual autocorrelations for periodic vector autoregressive time series models (PVAR henceforth) with uncorrelated but dependent innovations (i.e., weak PVAR). We then deduce the asymptotic distribution of the Ljung–Box-McLeod modified Portmanteau statistics for weak PVAR models. In Monte Carlo experiments, we illustrate that the proposed test statistics have reasonable finite sample performance. When the innovations exhibit conditional heteroscedasticity or other forms of dependence, it appears that the standard test statistics (under independent and identically distributed innovations) are generally unreliable, overrejecting, or underrejecting severely, while the proposed test statistics offer satisfactory levels. The proposed methodology is employed in the analysis of two river flows.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"205 ","pages":"Article 105379"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic checking of periodic vector autoregressive time series models with dependent errors\",\"authors\":\"Yacouba Boubacar Maïnassara ,&nbsp;Eugen Ursu\",\"doi\":\"10.1016/j.jmva.2024.105379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we study the asymptotic behavior of the residual autocorrelations for periodic vector autoregressive time series models (PVAR henceforth) with uncorrelated but dependent innovations (i.e., weak PVAR). We then deduce the asymptotic distribution of the Ljung–Box-McLeod modified Portmanteau statistics for weak PVAR models. In Monte Carlo experiments, we illustrate that the proposed test statistics have reasonable finite sample performance. When the innovations exhibit conditional heteroscedasticity or other forms of dependence, it appears that the standard test statistics (under independent and identically distributed innovations) are generally unreliable, overrejecting, or underrejecting severely, while the proposed test statistics offer satisfactory levels. The proposed methodology is employed in the analysis of two river flows.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"205 \",\"pages\":\"Article 105379\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000861\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000861","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有不相关但依赖创新(即弱 PVAR)的周期向量自回归时间序列模型(以下简称 PVAR)的残差自相关渐近行为。然后,我们推导出弱 PVAR 模型的 Ljung-Box-McLeod 修正波特曼统计量的渐近分布。在蒙特卡罗实验中,我们证明了所提出的检验统计量具有合理的有限样本性能。当创新值表现出条件异方差性或其他形式的依赖性时,标准检验统计量(在独立且同分布的创新值条件下)似乎通常并不可靠,会出现严重的高估或低估,而所提出的检验统计量则能达到令人满意的水平。在对两条河流进行分析时采用了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnostic checking of periodic vector autoregressive time series models with dependent errors
In this article, we study the asymptotic behavior of the residual autocorrelations for periodic vector autoregressive time series models (PVAR henceforth) with uncorrelated but dependent innovations (i.e., weak PVAR). We then deduce the asymptotic distribution of the Ljung–Box-McLeod modified Portmanteau statistics for weak PVAR models. In Monte Carlo experiments, we illustrate that the proposed test statistics have reasonable finite sample performance. When the innovations exhibit conditional heteroscedasticity or other forms of dependence, it appears that the standard test statistics (under independent and identically distributed innovations) are generally unreliable, overrejecting, or underrejecting severely, while the proposed test statistics offer satisfactory levels. The proposed methodology is employed in the analysis of two river flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信