基于条件分布函数的多元数据独立性和 K 样本检验测量方法

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Li Wang , Hongyi Zhou , Weidong Ma , Ying Yang
{"title":"基于条件分布函数的多元数据独立性和 K 样本检验测量方法","authors":"Li Wang ,&nbsp;Hongyi Zhou ,&nbsp;Weidong Ma ,&nbsp;Ying Yang","doi":"10.1016/j.jmva.2024.105378","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a new index to measure the degree of dependence and test for independence between two random vectors. The index is obtained by generalizing the Cramér–von Mises distances between the conditional and marginal distribution functions via the projection-averaging technique. If one of the random vectors is categorical with <span><math><mi>K</mi></math></span> categories, we propose slicing estimators to estimate our index. We conduct an asymptotic analysis for the slicing estimators, considering both situations where <span><math><mi>K</mi></math></span> is fixed and where <span><math><mi>K</mi></math></span> is allowed to increase with the sample size. When both random vectors are continuous, we introduce a kernel regression estimator for the proposed index, demonstrating that its asymptotic null distribution follows a normal distribution and conducting a local power analysis for the kernel estimator-based independence test. The proposed tests are studied via simulations, with a real data application presented to illustrate our methods.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"205 ","pages":"Article 105378"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A conditional distribution function-based measure for independence and K-sample tests in multivariate data\",\"authors\":\"Li Wang ,&nbsp;Hongyi Zhou ,&nbsp;Weidong Ma ,&nbsp;Ying Yang\",\"doi\":\"10.1016/j.jmva.2024.105378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a new index to measure the degree of dependence and test for independence between two random vectors. The index is obtained by generalizing the Cramér–von Mises distances between the conditional and marginal distribution functions via the projection-averaging technique. If one of the random vectors is categorical with <span><math><mi>K</mi></math></span> categories, we propose slicing estimators to estimate our index. We conduct an asymptotic analysis for the slicing estimators, considering both situations where <span><math><mi>K</mi></math></span> is fixed and where <span><math><mi>K</mi></math></span> is allowed to increase with the sample size. When both random vectors are continuous, we introduce a kernel regression estimator for the proposed index, demonstrating that its asymptotic null distribution follows a normal distribution and conducting a local power analysis for the kernel estimator-based independence test. The proposed tests are studied via simulations, with a real data application presented to illustrate our methods.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"205 \",\"pages\":\"Article 105378\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X2400085X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X2400085X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种新的指数来衡量两个随机向量之间的依赖程度并检验其独立性。该指数是通过投影平均技术对条件分布函数和边际分布函数之间的 Cramér-von Mises 距离进行一般化而得到的。如果其中一个随机向量是有 K 个类别的分类向量,我们将提出切片估计器来估计我们的指数。我们对切分估计器进行了渐近分析,考虑了 K 固定和允许 K 随样本量增加的两种情况。当两个随机向量都是连续的时候,我们为提出的指数引入了核回归估计器,证明其渐近零分布遵循正态分布,并对基于核估计器的独立性检验进行了局部幂次分析。我们通过模拟对所提出的检验进行了研究,并提供了一个真实数据应用来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A conditional distribution function-based measure for independence and K-sample tests in multivariate data
We introduce a new index to measure the degree of dependence and test for independence between two random vectors. The index is obtained by generalizing the Cramér–von Mises distances between the conditional and marginal distribution functions via the projection-averaging technique. If one of the random vectors is categorical with K categories, we propose slicing estimators to estimate our index. We conduct an asymptotic analysis for the slicing estimators, considering both situations where K is fixed and where K is allowed to increase with the sample size. When both random vectors are continuous, we introduce a kernel regression estimator for the proposed index, demonstrating that its asymptotic null distribution follows a normal distribution and conducting a local power analysis for the kernel estimator-based independence test. The proposed tests are studied via simulations, with a real data application presented to illustrate our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信