Linsong Xiao , Wenzao Li , Xiaoqiang Zhang , Hong Jiang , Bing Wan , Dehao Ren
{"title":"EMG-YOLO:嵌入式设备的高效火灾探测模型","authors":"Linsong Xiao , Wenzao Li , Xiaoqiang Zhang , Hong Jiang , Bing Wan , Dehao Ren","doi":"10.1016/j.dsp.2024.104824","DOIUrl":null,"url":null,"abstract":"<div><div>The number of edge embedded devices has been increasing with the development of Internet of Things (IoT) technology. In urban fire detection, improving the accuracy of fire detection based on embedded devices requires substantial computational resources, which exacerbates the conflict between the high precision needed for fire detection and the low computational capabilities of many embedded devices. To address this issue, this paper introduces a fire detection algorithm named EMG-YOLO. The goal is to improve the accuracy and efficiency of fire detection on embedded devices with limited computational resources. Initially, a Multi-scale Attention Module (MAM) is proposed, which effectively integrates multi-scale information to enhance feature representation. Subsequently, a novel Efficient Multi-scale Convolution Module (EMCM) is incorporated into the C2f structure to enhance the extraction of flame and smoke features, thereby providing additional feature information without increasing computational complexity. Moreover, a Global Feature Pyramid Network (GFPN) is integrated into the model neck to further enhance computational efficiency and mitigate information loss. Finally, the model undergoes pruning via a slimming algorithm to meet the deployment constraints of mobile embedded devices. Experimental results on customized flame and smoke datasets demonstrate that EMG-YOLO increases mAP@50 by 3.2%, decreases the number of parameters by 53.5%, and lowers GFLOPs to 49.8% of those in YOLOv8-n. These results show that EMG-YOLO significantly reduces the computational requirements while improving the accuracy of fire detection, and has a wide range of practical applications, especially for resource-constrained embedded devices.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104824"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EMG-YOLO: An efficient fire detection model for embedded devices\",\"authors\":\"Linsong Xiao , Wenzao Li , Xiaoqiang Zhang , Hong Jiang , Bing Wan , Dehao Ren\",\"doi\":\"10.1016/j.dsp.2024.104824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The number of edge embedded devices has been increasing with the development of Internet of Things (IoT) technology. In urban fire detection, improving the accuracy of fire detection based on embedded devices requires substantial computational resources, which exacerbates the conflict between the high precision needed for fire detection and the low computational capabilities of many embedded devices. To address this issue, this paper introduces a fire detection algorithm named EMG-YOLO. The goal is to improve the accuracy and efficiency of fire detection on embedded devices with limited computational resources. Initially, a Multi-scale Attention Module (MAM) is proposed, which effectively integrates multi-scale information to enhance feature representation. Subsequently, a novel Efficient Multi-scale Convolution Module (EMCM) is incorporated into the C2f structure to enhance the extraction of flame and smoke features, thereby providing additional feature information without increasing computational complexity. Moreover, a Global Feature Pyramid Network (GFPN) is integrated into the model neck to further enhance computational efficiency and mitigate information loss. Finally, the model undergoes pruning via a slimming algorithm to meet the deployment constraints of mobile embedded devices. Experimental results on customized flame and smoke datasets demonstrate that EMG-YOLO increases mAP@50 by 3.2%, decreases the number of parameters by 53.5%, and lowers GFLOPs to 49.8% of those in YOLOv8-n. These results show that EMG-YOLO significantly reduces the computational requirements while improving the accuracy of fire detection, and has a wide range of practical applications, especially for resource-constrained embedded devices.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"156 \",\"pages\":\"Article 104824\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200424004494\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004494","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
EMG-YOLO: An efficient fire detection model for embedded devices
The number of edge embedded devices has been increasing with the development of Internet of Things (IoT) technology. In urban fire detection, improving the accuracy of fire detection based on embedded devices requires substantial computational resources, which exacerbates the conflict between the high precision needed for fire detection and the low computational capabilities of many embedded devices. To address this issue, this paper introduces a fire detection algorithm named EMG-YOLO. The goal is to improve the accuracy and efficiency of fire detection on embedded devices with limited computational resources. Initially, a Multi-scale Attention Module (MAM) is proposed, which effectively integrates multi-scale information to enhance feature representation. Subsequently, a novel Efficient Multi-scale Convolution Module (EMCM) is incorporated into the C2f structure to enhance the extraction of flame and smoke features, thereby providing additional feature information without increasing computational complexity. Moreover, a Global Feature Pyramid Network (GFPN) is integrated into the model neck to further enhance computational efficiency and mitigate information loss. Finally, the model undergoes pruning via a slimming algorithm to meet the deployment constraints of mobile embedded devices. Experimental results on customized flame and smoke datasets demonstrate that EMG-YOLO increases mAP@50 by 3.2%, decreases the number of parameters by 53.5%, and lowers GFLOPs to 49.8% of those in YOLOv8-n. These results show that EMG-YOLO significantly reduces the computational requirements while improving the accuracy of fire detection, and has a wide range of practical applications, especially for resource-constrained embedded devices.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,