具有收缩吸引力区域的半线性椭圆方程的正极限和节点极限剖面

IF 1.3 2区 数学 Q1 MATHEMATICS
Mónica Clapp , Víctor Hernández-Santamaría , Alberto Saldaña
{"title":"具有收缩吸引力区域的半线性椭圆方程的正极限和节点极限剖面","authors":"Mónica Clapp ,&nbsp;Víctor Hernández-Santamaría ,&nbsp;Alberto Saldaña","doi":"10.1016/j.na.2024.113680","DOIUrl":null,"url":null,"abstract":"<div><div>We study the existence and concentration of positive and nodal solutions to a Schrödinger equation in the presence of a shrinking self-focusing core of arbitrary shape. Via a suitable rescaling, the concentration gives rise to a limiting profile that solves a nonautonomous elliptic semilinear equation with a sharp sign change in the nonlinearity. We characterize the (radial or foliated Schwarz) symmetries and the (polynomial) decay of the least-energy positive and nodal limiting profiles.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113680"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive and nodal limiting profiles for a semilinear elliptic equation with a shrinking region of attraction\",\"authors\":\"Mónica Clapp ,&nbsp;Víctor Hernández-Santamaría ,&nbsp;Alberto Saldaña\",\"doi\":\"10.1016/j.na.2024.113680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the existence and concentration of positive and nodal solutions to a Schrödinger equation in the presence of a shrinking self-focusing core of arbitrary shape. Via a suitable rescaling, the concentration gives rise to a limiting profile that solves a nonautonomous elliptic semilinear equation with a sharp sign change in the nonlinearity. We characterize the (radial or foliated Schwarz) symmetries and the (polynomial) decay of the least-energy positive and nodal limiting profiles.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"251 \",\"pages\":\"Article 113680\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001998\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001998","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在任意形状的收缩自聚焦核心存在的情况下,薛定谔方程正解和节点解的存在与集中。通过适当的重定标,这种集中会产生一个极限轮廓,该轮廓可以求解一个非自主椭圆半线性方程,其非线性符号会发生急剧变化。我们描述了(径向或叶状施瓦茨)对称性以及最小能量正向和节点极限剖面的(多项式)衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive and nodal limiting profiles for a semilinear elliptic equation with a shrinking region of attraction
We study the existence and concentration of positive and nodal solutions to a Schrödinger equation in the presence of a shrinking self-focusing core of arbitrary shape. Via a suitable rescaling, the concentration gives rise to a limiting profile that solves a nonautonomous elliptic semilinear equation with a sharp sign change in the nonlinearity. We characterize the (radial or foliated Schwarz) symmetries and the (polynomial) decay of the least-energy positive and nodal limiting profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信