论调谐液体多柱阻尼器的流场特性和振荡响应

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Hao Ding , Jian Song , Xiaojun Fang
{"title":"论调谐液体多柱阻尼器的流场特性和振荡响应","authors":"Hao Ding ,&nbsp;Jian Song ,&nbsp;Xiaojun Fang","doi":"10.1016/j.jfluidstructs.2024.104206","DOIUrl":null,"url":null,"abstract":"<div><div>The tuned liquid column damper (TLCD) operates as a fluid counterpart to a tuned mass damper (TMD), harnessing the dynamics of liquid flow to effectively counteract unwanted vibrations, thereby achieving the stability within the structural system. Most recently, to overcome the shortcoming that conventional TLCDs can only control the vibration of structures in a single direction, a toroidal tuned liquid multi-column damper (TLMCD) was proposed and its control effectiveness was preliminarily validated. However, the hydrodynamic characteristics of the TLMCD remain elusive and warrant further clarification. Therefore, this study employs computational fluid dynamics (CFD) methodology to meticulously simulate the intricate three-dimensional multiphase flow dynamics within toroidal TLMCDs across a spectrum of excitation conditions, aiming to elucidate their hydrodynamic behaviors. The efficacy of the CFD-based simulation approach is validated through a comparative analysis of numerically computed and experimentally measured liquid displacement responses. The error magnitude of the simplified theoretical model for toroidal TLMCDs is assessed by comparing the outcomes derived from CFD simulations with the theoretical predictions. Furthermore, by visualizing the spatial and temporal distribution of fluid flow field, the three-dimensional fluid flow properties of toroidal TLMCDs are characterized. The findings presented highlight the frequency-dependent nonlinear characteristics of liquid column oscillatory responses, providing a valuable benchmark for the development of more refined theoretical models and guiding the optimization of fluid-type dampers.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"131 ","pages":"Article 104206"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the characteristics of fluid flow field and oscillatory response of tuned liquid multi-column dampers\",\"authors\":\"Hao Ding ,&nbsp;Jian Song ,&nbsp;Xiaojun Fang\",\"doi\":\"10.1016/j.jfluidstructs.2024.104206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The tuned liquid column damper (TLCD) operates as a fluid counterpart to a tuned mass damper (TMD), harnessing the dynamics of liquid flow to effectively counteract unwanted vibrations, thereby achieving the stability within the structural system. Most recently, to overcome the shortcoming that conventional TLCDs can only control the vibration of structures in a single direction, a toroidal tuned liquid multi-column damper (TLMCD) was proposed and its control effectiveness was preliminarily validated. However, the hydrodynamic characteristics of the TLMCD remain elusive and warrant further clarification. Therefore, this study employs computational fluid dynamics (CFD) methodology to meticulously simulate the intricate three-dimensional multiphase flow dynamics within toroidal TLMCDs across a spectrum of excitation conditions, aiming to elucidate their hydrodynamic behaviors. The efficacy of the CFD-based simulation approach is validated through a comparative analysis of numerically computed and experimentally measured liquid displacement responses. The error magnitude of the simplified theoretical model for toroidal TLMCDs is assessed by comparing the outcomes derived from CFD simulations with the theoretical predictions. Furthermore, by visualizing the spatial and temporal distribution of fluid flow field, the three-dimensional fluid flow properties of toroidal TLMCDs are characterized. The findings presented highlight the frequency-dependent nonlinear characteristics of liquid column oscillatory responses, providing a valuable benchmark for the development of more refined theoretical models and guiding the optimization of fluid-type dampers.</div></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":\"131 \",\"pages\":\"Article 104206\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624001415\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001415","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

调谐液柱阻尼器(TLCD)是一种与调谐质量阻尼器(TMD)相对应的流体阻尼器,利用液体流动的动力学特性有效抵消不必要的振动,从而实现结构系统的稳定性。最近,为了克服传统 TLCD 只能控制结构单向振动的缺点,有人提出了环形调谐液体多柱阻尼器(TLMCD),并初步验证了其控制效果。然而,TLMCD 的流体动力学特性仍然难以捉摸,需要进一步阐明。因此,本研究采用计算流体动力学(CFD)方法,细致模拟了环形 TLMCD 在各种激励条件下复杂的三维多相流动力学,旨在阐明其流体动力学行为。通过对数值计算和实验测量的液体位移响应进行对比分析,验证了基于 CFD 模拟方法的有效性。通过比较 CFD 模拟结果和理论预测结果,评估了环形 TLMCD 简化理论模型的误差幅度。此外,通过对流体流场的空间和时间分布进行可视化,还对环形 TLMCD 的三维流体流动特性进行了描述。研究结果突出了液柱振荡响应的频率非线性特征,为开发更精细的理论模型和指导流体型阻尼器的优化提供了宝贵的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the characteristics of fluid flow field and oscillatory response of tuned liquid multi-column dampers

On the characteristics of fluid flow field and oscillatory response of tuned liquid multi-column dampers
The tuned liquid column damper (TLCD) operates as a fluid counterpart to a tuned mass damper (TMD), harnessing the dynamics of liquid flow to effectively counteract unwanted vibrations, thereby achieving the stability within the structural system. Most recently, to overcome the shortcoming that conventional TLCDs can only control the vibration of structures in a single direction, a toroidal tuned liquid multi-column damper (TLMCD) was proposed and its control effectiveness was preliminarily validated. However, the hydrodynamic characteristics of the TLMCD remain elusive and warrant further clarification. Therefore, this study employs computational fluid dynamics (CFD) methodology to meticulously simulate the intricate three-dimensional multiphase flow dynamics within toroidal TLMCDs across a spectrum of excitation conditions, aiming to elucidate their hydrodynamic behaviors. The efficacy of the CFD-based simulation approach is validated through a comparative analysis of numerically computed and experimentally measured liquid displacement responses. The error magnitude of the simplified theoretical model for toroidal TLMCDs is assessed by comparing the outcomes derived from CFD simulations with the theoretical predictions. Furthermore, by visualizing the spatial and temporal distribution of fluid flow field, the three-dimensional fluid flow properties of toroidal TLMCDs are characterized. The findings presented highlight the frequency-dependent nonlinear characteristics of liquid column oscillatory responses, providing a valuable benchmark for the development of more refined theoretical models and guiding the optimization of fluid-type dampers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信