{"title":"用于非稳态跨声速空气动力学的递归图卷积多网格自动编码器","authors":"David Massegur , Andrea Da Ronch","doi":"10.1016/j.jfluidstructs.2024.104202","DOIUrl":null,"url":null,"abstract":"<div><div>Unsteady, high-fidelity aerodynamic load predictions around a three-dimensional configuration will remain computationally expensive for the foreseeable future. Data-driven algorithms based on deep-learning are an attractive option for reduced order modelling of complex, nonlinear systems. However, a dedicated approach is needed for applicability to large and unstructured domains that are typical in engineering. This work presents a geometric-deep-learning multi-mesh autoencoder framework to predict the spatial and temporal evolution of aerodynamic loads for a finite-span wing undergoing different types of motion. The novel framework leverages on: (a) graph neural networks for aerodynamic surface grids embedded with a multi-resolution algorithm for dimensionality reduction; and (b) a recurrent scheme for time-marching the aerodynamic loads. The test case is for the BSCW wing in transonic flow undergoing a combination of forced-motions in pitch and plunge. A comprehensive comparison between a quasi-steady and a recurrent approach is provided. The model training requires four unsteady, high-fidelity aerodynamic analyses which require each about two days of HPC computing time. For any common engineering task that involves more than four cases, a clear benefit in computing costs is achieved using the proposed framework as an alternative predictive tool: new cases are computed in seconds on a standard GPU.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"131 ","pages":"Article 104202"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrent graph convolutional multi-mesh autoencoder for unsteady transonic aerodynamics\",\"authors\":\"David Massegur , Andrea Da Ronch\",\"doi\":\"10.1016/j.jfluidstructs.2024.104202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unsteady, high-fidelity aerodynamic load predictions around a three-dimensional configuration will remain computationally expensive for the foreseeable future. Data-driven algorithms based on deep-learning are an attractive option for reduced order modelling of complex, nonlinear systems. However, a dedicated approach is needed for applicability to large and unstructured domains that are typical in engineering. This work presents a geometric-deep-learning multi-mesh autoencoder framework to predict the spatial and temporal evolution of aerodynamic loads for a finite-span wing undergoing different types of motion. The novel framework leverages on: (a) graph neural networks for aerodynamic surface grids embedded with a multi-resolution algorithm for dimensionality reduction; and (b) a recurrent scheme for time-marching the aerodynamic loads. The test case is for the BSCW wing in transonic flow undergoing a combination of forced-motions in pitch and plunge. A comprehensive comparison between a quasi-steady and a recurrent approach is provided. The model training requires four unsteady, high-fidelity aerodynamic analyses which require each about two days of HPC computing time. For any common engineering task that involves more than four cases, a clear benefit in computing costs is achieved using the proposed framework as an alternative predictive tool: new cases are computed in seconds on a standard GPU.</div></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":\"131 \",\"pages\":\"Article 104202\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624001373\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001373","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Recurrent graph convolutional multi-mesh autoencoder for unsteady transonic aerodynamics
Unsteady, high-fidelity aerodynamic load predictions around a three-dimensional configuration will remain computationally expensive for the foreseeable future. Data-driven algorithms based on deep-learning are an attractive option for reduced order modelling of complex, nonlinear systems. However, a dedicated approach is needed for applicability to large and unstructured domains that are typical in engineering. This work presents a geometric-deep-learning multi-mesh autoencoder framework to predict the spatial and temporal evolution of aerodynamic loads for a finite-span wing undergoing different types of motion. The novel framework leverages on: (a) graph neural networks for aerodynamic surface grids embedded with a multi-resolution algorithm for dimensionality reduction; and (b) a recurrent scheme for time-marching the aerodynamic loads. The test case is for the BSCW wing in transonic flow undergoing a combination of forced-motions in pitch and plunge. A comprehensive comparison between a quasi-steady and a recurrent approach is provided. The model training requires four unsteady, high-fidelity aerodynamic analyses which require each about two days of HPC computing time. For any common engineering task that involves more than four cases, a clear benefit in computing costs is achieved using the proposed framework as an alternative predictive tool: new cases are computed in seconds on a standard GPU.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.