从光谱模板中学习二方图

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Subbareddy Batreddy , Aditya Siripuram , Jingxin Zhang
{"title":"从光谱模板中学习二方图","authors":"Subbareddy Batreddy ,&nbsp;Aditya Siripuram ,&nbsp;Jingxin Zhang","doi":"10.1016/j.sigpro.2024.109732","DOIUrl":null,"url":null,"abstract":"<div><div>Graph learning is crucial for understanding the relationship between data components. Signal processing-based graph learning algorithms are designed for specific signal models. This work investigates the problem of learning bipartite graphs given arbitrarily ordered spectral templates or graph eigenvectors. Starting from the spectral templates, the proposed algorithm identifies the vertex groups of the bipartite graph. Experiments conducted on three different types of synthetic datasets demonstrate that the proposed bipartite graph learning algorithms outperform structure-blind learning techniques across various signal-to-noise (SNR) regimes. Our algorithm leverages the spectral signatures of a bipartite graph, specifically the structure of the graph’s eigenvectors.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109732"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning bipartite graphs from spectral templates\",\"authors\":\"Subbareddy Batreddy ,&nbsp;Aditya Siripuram ,&nbsp;Jingxin Zhang\",\"doi\":\"10.1016/j.sigpro.2024.109732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graph learning is crucial for understanding the relationship between data components. Signal processing-based graph learning algorithms are designed for specific signal models. This work investigates the problem of learning bipartite graphs given arbitrarily ordered spectral templates or graph eigenvectors. Starting from the spectral templates, the proposed algorithm identifies the vertex groups of the bipartite graph. Experiments conducted on three different types of synthetic datasets demonstrate that the proposed bipartite graph learning algorithms outperform structure-blind learning techniques across various signal-to-noise (SNR) regimes. Our algorithm leverages the spectral signatures of a bipartite graph, specifically the structure of the graph’s eigenvectors.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"227 \",\"pages\":\"Article 109732\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424003529\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003529","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

图学习对于理解数据成分之间的关系至关重要。基于信号处理的图学习算法是为特定信号模型设计的。这项工作研究的是给定任意有序光谱模板或图特征向量的双方图学习问题。从频谱模板开始,所提出的算法可以识别出双方图的顶点组。在三种不同类型的合成数据集上进行的实验表明,在各种信噪比(SNR)条件下,所提出的双元图学习算法优于结构盲学习技术。我们的算法利用了双元图的频谱特征,特别是图的特征向量结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning bipartite graphs from spectral templates
Graph learning is crucial for understanding the relationship between data components. Signal processing-based graph learning algorithms are designed for specific signal models. This work investigates the problem of learning bipartite graphs given arbitrarily ordered spectral templates or graph eigenvectors. Starting from the spectral templates, the proposed algorithm identifies the vertex groups of the bipartite graph. Experiments conducted on three different types of synthetic datasets demonstrate that the proposed bipartite graph learning algorithms outperform structure-blind learning techniques across various signal-to-noise (SNR) regimes. Our algorithm leverages the spectral signatures of a bipartite graph, specifically the structure of the graph’s eigenvectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信