代数机器的统一下界,语义上

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Thomas Seiller , Luc Pellissier , Ulysse Léchine
{"title":"代数机器的统一下界,语义上","authors":"Thomas Seiller ,&nbsp;Luc Pellissier ,&nbsp;Ulysse Léchine","doi":"10.1016/j.ic.2024.105232","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new abstract method for proving lower bounds in computational complexity based on the notion of topological and measurable entropy for dynamical systems. It is shown to generalise several previous lower bounds results from the literature in algebraic complexity, thus providing a unifying framework for “topological” proofs of lower bounds. We further use this method to prove that <span>maxflow</span>, a <figure><img></figure> complete problem, is not computable in polylogarithmic time on parallel random access machines (<span>pram</span>s) working with real numbers. This improves on a result of Mulmuley since the class of machines considered extends the class “<span>pram</span>s without bit operations”, making more precise the relationship between Mulmuley's result and similar lower bounds on real <span>pram</span>s.</div></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"301 ","pages":"Article 105232"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unifying lower bounds for algebraic machines, semantically\",\"authors\":\"Thomas Seiller ,&nbsp;Luc Pellissier ,&nbsp;Ulysse Léchine\",\"doi\":\"10.1016/j.ic.2024.105232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a new abstract method for proving lower bounds in computational complexity based on the notion of topological and measurable entropy for dynamical systems. It is shown to generalise several previous lower bounds results from the literature in algebraic complexity, thus providing a unifying framework for “topological” proofs of lower bounds. We further use this method to prove that <span>maxflow</span>, a <figure><img></figure> complete problem, is not computable in polylogarithmic time on parallel random access machines (<span>pram</span>s) working with real numbers. This improves on a result of Mulmuley since the class of machines considered extends the class “<span>pram</span>s without bit operations”, making more precise the relationship between Mulmuley's result and similar lower bounds on real <span>pram</span>s.</div></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"301 \",\"pages\":\"Article 105232\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089054012400097X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089054012400097X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们基于动态系统的拓扑和可测熵概念,提出了一种证明计算复杂性下界的新抽象方法。研究表明,这种方法概括了代数复杂性文献中之前的几个下界结果,从而为下界的 "拓扑 "证明提供了一个统一的框架。我们进一步用这种方法证明,在处理实数的并行随机存取机(prams)上,无法在多对数时间内计算 maxflow 这个完整问题。这改进了 Mulmuley 的一个结果,因为所考虑的机器类别扩展了 "无位运算的 prams "类别,使得 Mulmuley 的结果与实数 prams 上的类似下界之间的关系更加精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unifying lower bounds for algebraic machines, semantically
We present a new abstract method for proving lower bounds in computational complexity based on the notion of topological and measurable entropy for dynamical systems. It is shown to generalise several previous lower bounds results from the literature in algebraic complexity, thus providing a unifying framework for “topological” proofs of lower bounds. We further use this method to prove that maxflow, a
complete problem, is not computable in polylogarithmic time on parallel random access machines (prams) working with real numbers. This improves on a result of Mulmuley since the class of machines considered extends the class “prams without bit operations”, making more precise the relationship between Mulmuley's result and similar lower bounds on real prams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信