预测富勒烯型有机太阳能电池中高 JSC 供体分子的机器学习方法

IF 2.8 3区 化学 Q3 CHEMISTRY, PHYSICAL
Yumi Morishita , Misato Yarimizu , Masanori Kaneko , Azusa Muraoka
{"title":"预测富勒烯型有机太阳能电池中高 JSC 供体分子的机器学习方法","authors":"Yumi Morishita ,&nbsp;Misato Yarimizu ,&nbsp;Masanori Kaneko ,&nbsp;Azusa Muraoka","doi":"10.1016/j.cplett.2024.141719","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to identify donor molecules that enhance the J<sub>SC</sub> in fullerene-type organic thin-film solar cells using materials informatics. After performing principal component analysis and Random Forest for feature selection, LASSO and Ridge regressions and SVR were developed. A genetic algorithm generated 250 new donor molecules, and SVR predicted that (i) 4H-cyclopentadithiophene, (ii) fluorine-containing structures, and (iii) C = O groups adjacent to thiophenes improve the J<sub>SC</sub>.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"857 ","pages":"Article 141719"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning approach for predicting high JSC donor molecules in fullerene-typed organic solar cells\",\"authors\":\"Yumi Morishita ,&nbsp;Misato Yarimizu ,&nbsp;Masanori Kaneko ,&nbsp;Azusa Muraoka\",\"doi\":\"10.1016/j.cplett.2024.141719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to identify donor molecules that enhance the J<sub>SC</sub> in fullerene-type organic thin-film solar cells using materials informatics. After performing principal component analysis and Random Forest for feature selection, LASSO and Ridge regressions and SVR were developed. A genetic algorithm generated 250 new donor molecules, and SVR predicted that (i) 4H-cyclopentadithiophene, (ii) fluorine-containing structures, and (iii) C = O groups adjacent to thiophenes improve the J<sub>SC</sub>.</div></div>\",\"PeriodicalId\":273,\"journal\":{\"name\":\"Chemical Physics Letters\",\"volume\":\"857 \",\"pages\":\"Article 141719\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009261424006614\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261424006614","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用材料信息学确定可增强富勒烯型有机薄膜太阳能电池中JSC的供体分子。在进行主成分分析和随机森林特征选择后,开发了 LASSO 和 Ridge 回归以及 SVR。遗传算法生成了 250 种新的供体分子,SVR 预测:(i) 4H-环戊二烯噻吩;(ii) 含氟结构;(iii) 毗邻噻吩的 C = O 基团可改善 JSC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning approach for predicting high JSC donor molecules in fullerene-typed organic solar cells

Machine learning approach for predicting high JSC donor molecules in fullerene-typed organic solar cells
This study aimed to identify donor molecules that enhance the JSC in fullerene-type organic thin-film solar cells using materials informatics. After performing principal component analysis and Random Forest for feature selection, LASSO and Ridge regressions and SVR were developed. A genetic algorithm generated 250 new donor molecules, and SVR predicted that (i) 4H-cyclopentadithiophene, (ii) fluorine-containing structures, and (iii) C = O groups adjacent to thiophenes improve the JSC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Letters
Chemical Physics Letters 化学-物理:原子、分子和化学物理
CiteScore
5.70
自引率
3.60%
发文量
798
审稿时长
33 days
期刊介绍: Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage. Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信