Re-imagen:使用大型语言模型在合成场景法证数据集中生成连贯的背景活动

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lena L. Voigt , Felix Freiling , Christopher J. Hargreaves
{"title":"Re-imagen:使用大型语言模型在合成场景法证数据集中生成连贯的背景活动","authors":"Lena L. Voigt ,&nbsp;Felix Freiling ,&nbsp;Christopher J. Hargreaves","doi":"10.1016/j.fsidi.2024.301805","DOIUrl":null,"url":null,"abstract":"<div><div>Due to legal and privacy-related restrictions, the generation of <em>synthetic</em> data is recommended for creating datasets for digital forensic education and training. One challenge when synthesizing scenario-based forensic data is the creation of coherent background activity besides evidential actions. This work leverages the creative writing abilities of large language models (LLMs) to generate personas and actions that describe the background usage of a device consistent with the created persona. These actions are subsequently converted into a machine-readable format and executed on a virtualized device using VM control automation. We introduce Re-imagen, a framework that combines state-of-the-art LLMs and a recent unintrusive GUI automation tool to produce synthetic disk images that contain arguably coherent “wear-and-tear” artifacts that current synthesis platforms lack. While, for now, the focus is on the coherence of the generated background activity, we believe that the proposed approach is a step toward more <em>realistic</em> synthetic disk image generation.</div></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re-imagen: Generating coherent background activity in synthetic scenario-based forensic datasets using large language models\",\"authors\":\"Lena L. Voigt ,&nbsp;Felix Freiling ,&nbsp;Christopher J. Hargreaves\",\"doi\":\"10.1016/j.fsidi.2024.301805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to legal and privacy-related restrictions, the generation of <em>synthetic</em> data is recommended for creating datasets for digital forensic education and training. One challenge when synthesizing scenario-based forensic data is the creation of coherent background activity besides evidential actions. This work leverages the creative writing abilities of large language models (LLMs) to generate personas and actions that describe the background usage of a device consistent with the created persona. These actions are subsequently converted into a machine-readable format and executed on a virtualized device using VM control automation. We introduce Re-imagen, a framework that combines state-of-the-art LLMs and a recent unintrusive GUI automation tool to produce synthetic disk images that contain arguably coherent “wear-and-tear” artifacts that current synthesis platforms lack. While, for now, the focus is on the coherence of the generated background activity, we believe that the proposed approach is a step toward more <em>realistic</em> synthetic disk image generation.</div></div>\",\"PeriodicalId\":48481,\"journal\":{\"name\":\"Forensic Science International-Digital Investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Digital Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266628172400129X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266628172400129X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于法律和隐私方面的限制,建议生成合成数据,以便为数字取证教育和培训创建数据集。合成基于场景的法证数据时面临的一个挑战是,除了证据行动外,如何创建连贯的背景活动。这项工作利用大型语言模型(LLM)的创造性写作能力,生成角色和动作,描述与所创建角色一致的设备背景使用情况。这些操作随后被转换成机器可读的格式,并通过虚拟机控制自动化在虚拟化设备上执行。我们介绍的 Re-imagen 是一个框架,它结合了最先进的 LLM 和最新的非侵入式图形用户界面自动化工具,可生成合成磁盘映像,其中包含当前合成平台所缺乏的连贯的 "磨损 "人工痕迹。虽然目前的重点是生成的背景活动的连贯性,但我们相信所提出的方法是向生成更逼真的合成磁盘图像迈出的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Re-imagen: Generating coherent background activity in synthetic scenario-based forensic datasets using large language models
Due to legal and privacy-related restrictions, the generation of synthetic data is recommended for creating datasets for digital forensic education and training. One challenge when synthesizing scenario-based forensic data is the creation of coherent background activity besides evidential actions. This work leverages the creative writing abilities of large language models (LLMs) to generate personas and actions that describe the background usage of a device consistent with the created persona. These actions are subsequently converted into a machine-readable format and executed on a virtualized device using VM control automation. We introduce Re-imagen, a framework that combines state-of-the-art LLMs and a recent unintrusive GUI automation tool to produce synthetic disk images that contain arguably coherent “wear-and-tear” artifacts that current synthesis platforms lack. While, for now, the focus is on the coherence of the generated background activity, we believe that the proposed approach is a step toward more realistic synthetic disk image generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信