{"title":"网格驱动的重采样和正则化,可直接对扫描物体进行基于点云的稳健流动分析","authors":"Monu Jaiswal, Ashton M. Corpuz, Ming-Chen Hsu","doi":"10.1016/j.cma.2024.117426","DOIUrl":null,"url":null,"abstract":"<div><div>Point cloud representations of three-dimensional objects have remained indispensable across a diverse array of applications, given their ability to represent complex real-world geometry with just a set of points. The high fidelity and versatility of point clouds have been utilized in directly performing numerical analysis for engineering applications, bypassing the labor-intensive and time-consuming tasks of creating analysis-suitable CAD models. However, point clouds exhibit various levels of quality, often containing defects such as holes, noise, and sparse regions, leading to sub-optimal geometry representation that can impact the stability and accuracy of any analysis study. This paper aims to overcome such challenges by proposing a novel method that expands upon our recently developed direct point cloud-to-CFD approach based on immersogeometric analysis. The proposed method features a mesh-driven resampling technique to fill any unintended gaps and regularize the point cloud, making it suitable for CFD analysis. Additionally, ghost penalty stabilization is employed for incompressible flow to improve the conditioning and stability compromised by the small cut elements in immersed methods. The developed method is validated against standard benchmark geometries and real-world point clouds obtained in-house with photogrammetry. Results demonstrate the proposed framework’s robustness in facilitating CFD simulations directly on point clouds of varying quality, underscoring its potential for practical applications in analyzing real-world structures.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"432 ","pages":"Article 117426"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesh-driven resampling and regularization for robust point cloud-based flow analysis directly on scanned objects\",\"authors\":\"Monu Jaiswal, Ashton M. Corpuz, Ming-Chen Hsu\",\"doi\":\"10.1016/j.cma.2024.117426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Point cloud representations of three-dimensional objects have remained indispensable across a diverse array of applications, given their ability to represent complex real-world geometry with just a set of points. The high fidelity and versatility of point clouds have been utilized in directly performing numerical analysis for engineering applications, bypassing the labor-intensive and time-consuming tasks of creating analysis-suitable CAD models. However, point clouds exhibit various levels of quality, often containing defects such as holes, noise, and sparse regions, leading to sub-optimal geometry representation that can impact the stability and accuracy of any analysis study. This paper aims to overcome such challenges by proposing a novel method that expands upon our recently developed direct point cloud-to-CFD approach based on immersogeometric analysis. The proposed method features a mesh-driven resampling technique to fill any unintended gaps and regularize the point cloud, making it suitable for CFD analysis. Additionally, ghost penalty stabilization is employed for incompressible flow to improve the conditioning and stability compromised by the small cut elements in immersed methods. The developed method is validated against standard benchmark geometries and real-world point clouds obtained in-house with photogrammetry. Results demonstrate the proposed framework’s robustness in facilitating CFD simulations directly on point clouds of varying quality, underscoring its potential for practical applications in analyzing real-world structures.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"432 \",\"pages\":\"Article 117426\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524006819\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524006819","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Mesh-driven resampling and regularization for robust point cloud-based flow analysis directly on scanned objects
Point cloud representations of three-dimensional objects have remained indispensable across a diverse array of applications, given their ability to represent complex real-world geometry with just a set of points. The high fidelity and versatility of point clouds have been utilized in directly performing numerical analysis for engineering applications, bypassing the labor-intensive and time-consuming tasks of creating analysis-suitable CAD models. However, point clouds exhibit various levels of quality, often containing defects such as holes, noise, and sparse regions, leading to sub-optimal geometry representation that can impact the stability and accuracy of any analysis study. This paper aims to overcome such challenges by proposing a novel method that expands upon our recently developed direct point cloud-to-CFD approach based on immersogeometric analysis. The proposed method features a mesh-driven resampling technique to fill any unintended gaps and regularize the point cloud, making it suitable for CFD analysis. Additionally, ghost penalty stabilization is employed for incompressible flow to improve the conditioning and stability compromised by the small cut elements in immersed methods. The developed method is validated against standard benchmark geometries and real-world point clouds obtained in-house with photogrammetry. Results demonstrate the proposed framework’s robustness in facilitating CFD simulations directly on point clouds of varying quality, underscoring its potential for practical applications in analyzing real-world structures.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.