具有两个内部温度测量值的分数侧向问题的双参数提霍诺夫正则化

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Dang Duc Trong , Dinh Nguyen Duy Hai , Nguyen Dang Minh , Nguyen Nhu Lan
{"title":"具有两个内部温度测量值的分数侧向问题的双参数提霍诺夫正则化","authors":"Dang Duc Trong ,&nbsp;Dinh Nguyen Duy Hai ,&nbsp;Nguyen Dang Minh ,&nbsp;Nguyen Nhu Lan","doi":"10.1016/j.matcom.2024.10.013","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with a fractional sideways problem of determining the surface temperature of a heat body from two interior temperature measurements. Mathematically, it is formulated as a problem for the one-dimensional heat equation with Caputo fractional time derivative of order <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, where the data are given at two interior points, namely <span><math><mrow><mi>x</mi><mo>=</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>x</mi><mo>=</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, and the solution is determined for <span><math><mrow><mi>x</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>L</mi><mo>)</mo></mrow><mo>,</mo><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mi>L</mi></mrow></math></span>. The problem is challenging since it is severely ill-posed for <span><math><mrow><mi>x</mi><mo>∉</mo><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></mrow></math></span>. For the ill-posed problem, we apply the Tikhonov regularization method in Hilbert scales to construct stable approximation problems. Using the two-parameter Tikhonov regularization, we obtain the order optimal convergence estimates in Hilbert scales by using both <em>a priori</em> and <em>a posteriori</em> parameter choice strategies. Numerical experiments are presented to show the validity of the proposed method.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-parameter Tikhonov regularization for a fractional sideways problem with two interior temperature measurements\",\"authors\":\"Dang Duc Trong ,&nbsp;Dinh Nguyen Duy Hai ,&nbsp;Nguyen Dang Minh ,&nbsp;Nguyen Nhu Lan\",\"doi\":\"10.1016/j.matcom.2024.10.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper deals with a fractional sideways problem of determining the surface temperature of a heat body from two interior temperature measurements. Mathematically, it is formulated as a problem for the one-dimensional heat equation with Caputo fractional time derivative of order <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span>, where the data are given at two interior points, namely <span><math><mrow><mi>x</mi><mo>=</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>x</mi><mo>=</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, and the solution is determined for <span><math><mrow><mi>x</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>L</mi><mo>)</mo></mrow><mo>,</mo><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mi>L</mi></mrow></math></span>. The problem is challenging since it is severely ill-posed for <span><math><mrow><mi>x</mi><mo>∉</mo><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></mrow></math></span>. For the ill-posed problem, we apply the Tikhonov regularization method in Hilbert scales to construct stable approximation problems. Using the two-parameter Tikhonov regularization, we obtain the order optimal convergence estimates in Hilbert scales by using both <em>a priori</em> and <em>a posteriori</em> parameter choice strategies. Numerical experiments are presented to show the validity of the proposed method.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424004038\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004038","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论的是根据两次内部温度测量值确定热体表面温度的分数侧向问题。在数学上,它被表述为具有阶数 α∈(0,1] 的卡普托分数时间导数的一维热方程问题,其中数据是在两个内部点给出的,即 x=x1 和 x=x2,并确定 x∈(0,L),0<x1<x2≤L 的解。这个问题具有挑战性,因为对于 x∉[x1,x2]来说,它是一个严重的问题。对于这个问题,我们采用希尔伯特尺度下的 Tikhonov 正则化方法来构造稳定的近似问题。利用双参数 Tikhonov 正则化,我们通过先验和后验参数选择策略获得了希尔伯特尺度下的阶次最优收敛估计值。数值实验证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A two-parameter Tikhonov regularization for a fractional sideways problem with two interior temperature measurements
This paper deals with a fractional sideways problem of determining the surface temperature of a heat body from two interior temperature measurements. Mathematically, it is formulated as a problem for the one-dimensional heat equation with Caputo fractional time derivative of order α(0,1], where the data are given at two interior points, namely x=x1 and x=x2, and the solution is determined for x(0,L),0<x1<x2L. The problem is challenging since it is severely ill-posed for x[x1,x2]. For the ill-posed problem, we apply the Tikhonov regularization method in Hilbert scales to construct stable approximation problems. Using the two-parameter Tikhonov regularization, we obtain the order optimal convergence estimates in Hilbert scales by using both a priori and a posteriori parameter choice strategies. Numerical experiments are presented to show the validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信