Chih-Wen Chang , Sania Qureshi , Ioannis K. Argyros , Francisco I. Chicharro , Amanullah Soomro
{"title":"求解一维及更高维度非线性模型的改进型两步优化迭代法","authors":"Chih-Wen Chang , Sania Qureshi , Ioannis K. Argyros , Francisco I. Chicharro , Amanullah Soomro","doi":"10.1016/j.matcom.2024.09.021","DOIUrl":null,"url":null,"abstract":"<div><div>Iterative methods are essential tools in computational science, particularly for addressing nonlinear models. This study introduces a novel two-step optimal iterative root-finding method designed to solve nonlinear equations and systems of nonlinear equations. The proposed method exhibits the optimal convergence, adhering to the Kung-Traub conjecture, and necessitates only three function evaluations per iteration to achieve a fourth-order optimal iterative process. The development of this method involves the amalgamation of two well-established third-order iterative techniques. Comprehensive local and semilocal convergence analyses are conducted, accompanied by a stability investigation of the proposed approach. This method marks a substantial enhancement over existing optimal iterative methods, as evidenced by its performance in various nonlinear models. Extensive testing demonstrates that the proposed method consistently yields accurate and efficient results, surpassing existing algorithms in both speed and accuracy. Numerical simulations, including real-world models such as boundary value problems and integral equations, indicate that the proposed optimal method outperforms several contemporary optimal iterative techniques.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified two-step optimal iterative method for solving nonlinear models in one and higher dimensions\",\"authors\":\"Chih-Wen Chang , Sania Qureshi , Ioannis K. Argyros , Francisco I. Chicharro , Amanullah Soomro\",\"doi\":\"10.1016/j.matcom.2024.09.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Iterative methods are essential tools in computational science, particularly for addressing nonlinear models. This study introduces a novel two-step optimal iterative root-finding method designed to solve nonlinear equations and systems of nonlinear equations. The proposed method exhibits the optimal convergence, adhering to the Kung-Traub conjecture, and necessitates only three function evaluations per iteration to achieve a fourth-order optimal iterative process. The development of this method involves the amalgamation of two well-established third-order iterative techniques. Comprehensive local and semilocal convergence analyses are conducted, accompanied by a stability investigation of the proposed approach. This method marks a substantial enhancement over existing optimal iterative methods, as evidenced by its performance in various nonlinear models. Extensive testing demonstrates that the proposed method consistently yields accurate and efficient results, surpassing existing algorithms in both speed and accuracy. Numerical simulations, including real-world models such as boundary value problems and integral equations, indicate that the proposed optimal method outperforms several contemporary optimal iterative techniques.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037847542400377X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037847542400377X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A modified two-step optimal iterative method for solving nonlinear models in one and higher dimensions
Iterative methods are essential tools in computational science, particularly for addressing nonlinear models. This study introduces a novel two-step optimal iterative root-finding method designed to solve nonlinear equations and systems of nonlinear equations. The proposed method exhibits the optimal convergence, adhering to the Kung-Traub conjecture, and necessitates only three function evaluations per iteration to achieve a fourth-order optimal iterative process. The development of this method involves the amalgamation of two well-established third-order iterative techniques. Comprehensive local and semilocal convergence analyses are conducted, accompanied by a stability investigation of the proposed approach. This method marks a substantial enhancement over existing optimal iterative methods, as evidenced by its performance in various nonlinear models. Extensive testing demonstrates that the proposed method consistently yields accurate and efficient results, surpassing existing algorithms in both speed and accuracy. Numerical simulations, including real-world models such as boundary value problems and integral equations, indicate that the proposed optimal method outperforms several contemporary optimal iterative techniques.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.