Qingyan Meng , Yejuan Wang , Peter E. Kloeden , Xiaoying Han
{"title":"具有莱维噪声和时变系数的多维随机动力系统的福克-普朗克方程和费曼-卡克公式","authors":"Qingyan Meng , Yejuan Wang , Peter E. Kloeden , Xiaoying Han","doi":"10.1016/j.matcom.2024.10.014","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this paper is to establish a version of the Feynman–Kac formula for the time-dependent multidimensional nonlocal Fokker–Planck equation corresponding to a class of time-dependent stochastic differential equations driven by multiplicative symmetric (or asymmetric) <span><math><mi>α</mi></math></span>-stable Lévy noise. First the forward nonlocal Fokker–Planck equation is derived by the adjoint operator method, overcoming the challenges posed by time-dependent multidimensional nonlinear symmetric <span><math><mi>α</mi></math></span>-stable Lévy noise. Subsequently, the Feynman–Kac formula for the forward multidimensional time-dependent nonlocal Fokker–Planck equation is established by applying techniques for the backward nonlocal Fokker–Planck equations, which is associated with the backward stochastic differential equation driven by the multiplicative symmetric <span><math><mi>α</mi></math></span>-stable Lévy noise. Notably, in the case of asymmetric <span><math><mi>α</mi></math></span>-stable Lévy noise case, the presence of the characteristic function in the nonlocal operator adds complexity to the analysis. Using the Feynman–Kac formula, it is demonstrated that the solution of the forward nonlocal Fokker–Planck equation can be readily simulated through Monte Carlo approximation, especially in scenarios involving long-time simulation settings with large steps. These concepts are illustrated with intriguing examples, and the dynamic evolution of the probability density function corresponding to the stochastic SIS model and the stochastic model for the MeKS network (reflecting the interactions among the MecA complex, ComK and ComS) are investigated over an extended period.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"229 ","pages":"Pages 574-593"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fokker–Planck equation and Feynman–Kac formula for multidimensional stochastic dynamical systems with Lévy noises and time-dependent coefficients\",\"authors\":\"Qingyan Meng , Yejuan Wang , Peter E. Kloeden , Xiaoying Han\",\"doi\":\"10.1016/j.matcom.2024.10.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of this paper is to establish a version of the Feynman–Kac formula for the time-dependent multidimensional nonlocal Fokker–Planck equation corresponding to a class of time-dependent stochastic differential equations driven by multiplicative symmetric (or asymmetric) <span><math><mi>α</mi></math></span>-stable Lévy noise. First the forward nonlocal Fokker–Planck equation is derived by the adjoint operator method, overcoming the challenges posed by time-dependent multidimensional nonlinear symmetric <span><math><mi>α</mi></math></span>-stable Lévy noise. Subsequently, the Feynman–Kac formula for the forward multidimensional time-dependent nonlocal Fokker–Planck equation is established by applying techniques for the backward nonlocal Fokker–Planck equations, which is associated with the backward stochastic differential equation driven by the multiplicative symmetric <span><math><mi>α</mi></math></span>-stable Lévy noise. Notably, in the case of asymmetric <span><math><mi>α</mi></math></span>-stable Lévy noise case, the presence of the characteristic function in the nonlocal operator adds complexity to the analysis. Using the Feynman–Kac formula, it is demonstrated that the solution of the forward nonlocal Fokker–Planck equation can be readily simulated through Monte Carlo approximation, especially in scenarios involving long-time simulation settings with large steps. These concepts are illustrated with intriguing examples, and the dynamic evolution of the probability density function corresponding to the stochastic SIS model and the stochastic model for the MeKS network (reflecting the interactions among the MecA complex, ComK and ComS) are investigated over an extended period.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"229 \",\"pages\":\"Pages 574-593\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037847542400404X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037847542400404X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Fokker–Planck equation and Feynman–Kac formula for multidimensional stochastic dynamical systems with Lévy noises and time-dependent coefficients
The aim of this paper is to establish a version of the Feynman–Kac formula for the time-dependent multidimensional nonlocal Fokker–Planck equation corresponding to a class of time-dependent stochastic differential equations driven by multiplicative symmetric (or asymmetric) -stable Lévy noise. First the forward nonlocal Fokker–Planck equation is derived by the adjoint operator method, overcoming the challenges posed by time-dependent multidimensional nonlinear symmetric -stable Lévy noise. Subsequently, the Feynman–Kac formula for the forward multidimensional time-dependent nonlocal Fokker–Planck equation is established by applying techniques for the backward nonlocal Fokker–Planck equations, which is associated with the backward stochastic differential equation driven by the multiplicative symmetric -stable Lévy noise. Notably, in the case of asymmetric -stable Lévy noise case, the presence of the characteristic function in the nonlocal operator adds complexity to the analysis. Using the Feynman–Kac formula, it is demonstrated that the solution of the forward nonlocal Fokker–Planck equation can be readily simulated through Monte Carlo approximation, especially in scenarios involving long-time simulation settings with large steps. These concepts are illustrated with intriguing examples, and the dynamic evolution of the probability density function corresponding to the stochastic SIS model and the stochastic model for the MeKS network (reflecting the interactions among the MecA complex, ComK and ComS) are investigated over an extended period.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.