在巴兹金的猎物-食肉动物模型中,适应性猎物避难所能否促进物种共存?

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Santana Mondal, Subhas Khajanchi
{"title":"在巴兹金的猎物-食肉动物模型中,适应性猎物避难所能否促进物种共存?","authors":"Santana Mondal,&nbsp;Subhas Khajanchi","doi":"10.1016/j.matcom.2024.10.020","DOIUrl":null,"url":null,"abstract":"<div><div>Bazykin’s prey–predator system with constant and adaptive prey refuge is investigated in this paper. We examine Bazykin’s resource consumer system with exponential growth rate and by employing constant prey refuge we demonstrate that refuge does promote species coexistence. The incorporation of constant prey refuge expands the stability zone for the interior equilibrium. Furthermore, the bifurcation diagram with reference to prey refuge (<span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>) shows how <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> influences the system’s behavior from unstable to periodic stability and then to equilibrium stability. Next, we provide a Bazykin’s model with adaptive prey refuge and develop a fitness function for the prey population using refuge as a strategy and in order to obtain the prey’s optimal response to the environment we determine evolutionary stable strategies (ESS). Our model consists of more than one ESS, thus we employ the best response dynamics for the prey strategy. Our analysis showcases that adaptive refuge used by the prey population promotes the coexistence of prey–predator dynamics. Our theoretical analysis is supported by extensive numerical simulations. Bifurcation diagrams with reference to the two most crucial parameters, namely, <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (intra-species competition rate among predators) and <span><math><mi>τ</mi></math></span> (the rate at which populations adapt to their environment), are included in the numerical analysis. Species cohabitation along a limit cycle or at an equilibrium is discovered to be dependent on the pace of strategy dynamics and the competition amongst predator species.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can adaptive prey refuge facilitate species coexistence in Bazykin’s prey–predator model?\",\"authors\":\"Santana Mondal,&nbsp;Subhas Khajanchi\",\"doi\":\"10.1016/j.matcom.2024.10.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bazykin’s prey–predator system with constant and adaptive prey refuge is investigated in this paper. We examine Bazykin’s resource consumer system with exponential growth rate and by employing constant prey refuge we demonstrate that refuge does promote species coexistence. The incorporation of constant prey refuge expands the stability zone for the interior equilibrium. Furthermore, the bifurcation diagram with reference to prey refuge (<span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>) shows how <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> influences the system’s behavior from unstable to periodic stability and then to equilibrium stability. Next, we provide a Bazykin’s model with adaptive prey refuge and develop a fitness function for the prey population using refuge as a strategy and in order to obtain the prey’s optimal response to the environment we determine evolutionary stable strategies (ESS). Our model consists of more than one ESS, thus we employ the best response dynamics for the prey strategy. Our analysis showcases that adaptive refuge used by the prey population promotes the coexistence of prey–predator dynamics. Our theoretical analysis is supported by extensive numerical simulations. Bifurcation diagrams with reference to the two most crucial parameters, namely, <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (intra-species competition rate among predators) and <span><math><mi>τ</mi></math></span> (the rate at which populations adapt to their environment), are included in the numerical analysis. Species cohabitation along a limit cycle or at an equilibrium is discovered to be dependent on the pace of strategy dynamics and the competition amongst predator species.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424004105\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004105","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有恒定和自适应猎物避难所的巴兹金猎物-捕食者系统。我们研究了具有指数增长率的巴兹金资源消费者系统,并通过采用恒定猎物避难所证明了避难所确实能促进物种共存。恒定猎物避难所的加入扩大了内部平衡的稳定区域。此外,参照猎物避难所(ur)的分岔图显示了 ur 如何影响系统行为,使其从不稳定性到周期稳定性,再到平衡稳定性。接下来,我们提供了一个具有自适应猎物避难所的巴兹金模型,并开发了以避难所为策略的猎物种群适应度函数,为了获得猎物对环境的最优响应,我们确定了进化稳定策略(ESS)。我们的模型由不止一个ESS组成,因此我们采用了猎物策略的最佳响应动态。我们的分析表明,猎物种群使用的适应性避难所促进了猎物与捕食者的动态共存。我们的理论分析得到了大量数值模拟的支持。数值分析中包含了两个最关键参数的分岔图,即δ2(捕食者之间的种内竞争率)和τ(种群适应环境的速率)。研究发现,物种在极限周期或平衡状态下的同栖取决于策略动态的速度和捕食者物种之间的竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can adaptive prey refuge facilitate species coexistence in Bazykin’s prey–predator model?
Bazykin’s prey–predator system with constant and adaptive prey refuge is investigated in this paper. We examine Bazykin’s resource consumer system with exponential growth rate and by employing constant prey refuge we demonstrate that refuge does promote species coexistence. The incorporation of constant prey refuge expands the stability zone for the interior equilibrium. Furthermore, the bifurcation diagram with reference to prey refuge (ur) shows how ur influences the system’s behavior from unstable to periodic stability and then to equilibrium stability. Next, we provide a Bazykin’s model with adaptive prey refuge and develop a fitness function for the prey population using refuge as a strategy and in order to obtain the prey’s optimal response to the environment we determine evolutionary stable strategies (ESS). Our model consists of more than one ESS, thus we employ the best response dynamics for the prey strategy. Our analysis showcases that adaptive refuge used by the prey population promotes the coexistence of prey–predator dynamics. Our theoretical analysis is supported by extensive numerical simulations. Bifurcation diagrams with reference to the two most crucial parameters, namely, δ2 (intra-species competition rate among predators) and τ (the rate at which populations adapt to their environment), are included in the numerical analysis. Species cohabitation along a limit cycle or at an equilibrium is discovered to be dependent on the pace of strategy dynamics and the competition amongst predator species.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信