高级混凝土在衰减电离辐射方面的功效:全面审查和比较

IF 3.3 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Rajni Devi , Poonamjot , Mohinder Singh , Amandeep Sharma
{"title":"高级混凝土在衰减电离辐射方面的功效:全面审查和比较","authors":"Rajni Devi ,&nbsp;Poonamjot ,&nbsp;Mohinder Singh ,&nbsp;Amandeep Sharma","doi":"10.1016/j.pnucene.2024.105502","DOIUrl":null,"url":null,"abstract":"<div><div>Radiation shielding materials are key components to suppress the hazardous effects of ionizing radiation, especially energetic gamma rays and penetrative neutrons. This review includes the most ancient building material, concrete, in its different composition obtained by introducing a variety of additives, aggregates and nanomaterials in its conventional form. The objective of present work is to critically review and compare the variety of concretes, reported through various experimental and computational methods, so that the best composition among diverse concrete categories can be highlighted. For this purpose the essential shielding parameters namely mass attenuation coefficient (MAC) and half value layer (HVL) at useful gamma energies of 662, 1173 and 1332 keV have been compared graphically. The protective shielding concretes against neutrons have also been studied through a plot corresponding to Fast Neutron Removal Cross-sections (FNRCS) data of different concretes. Lastly, shielding competency of granite and pyroclastic rock samples for light and heavy charged particles have been included by taking into consideration the interaction parameters namely mass stopping power and projected range. Apart from this, numerous advanced applications of radiation shielding concretes, proper utilization of different forms of waste in concrete mix and few shortcomings of concrete specimens are also listed in this review paper. From the comparative plots of various concretes it is concluded that marble based concretes are best for gamma ray attenuation and nanomaterials based compositions are top if lesser thickness is to employ for attenuation. On the basis of acquired knowledge from literature, the present work will highlight the future perspectives of concretes as shielding materials and would be quite helpful for the selection of appropriate compositions by the community interacting directly or indirectly with ionizing radiations.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"178 ","pages":"Article 105502"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of advanced concretes for attenuation of ionizing radiations: A comprehensive review and comparison\",\"authors\":\"Rajni Devi ,&nbsp;Poonamjot ,&nbsp;Mohinder Singh ,&nbsp;Amandeep Sharma\",\"doi\":\"10.1016/j.pnucene.2024.105502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Radiation shielding materials are key components to suppress the hazardous effects of ionizing radiation, especially energetic gamma rays and penetrative neutrons. This review includes the most ancient building material, concrete, in its different composition obtained by introducing a variety of additives, aggregates and nanomaterials in its conventional form. The objective of present work is to critically review and compare the variety of concretes, reported through various experimental and computational methods, so that the best composition among diverse concrete categories can be highlighted. For this purpose the essential shielding parameters namely mass attenuation coefficient (MAC) and half value layer (HVL) at useful gamma energies of 662, 1173 and 1332 keV have been compared graphically. The protective shielding concretes against neutrons have also been studied through a plot corresponding to Fast Neutron Removal Cross-sections (FNRCS) data of different concretes. Lastly, shielding competency of granite and pyroclastic rock samples for light and heavy charged particles have been included by taking into consideration the interaction parameters namely mass stopping power and projected range. Apart from this, numerous advanced applications of radiation shielding concretes, proper utilization of different forms of waste in concrete mix and few shortcomings of concrete specimens are also listed in this review paper. From the comparative plots of various concretes it is concluded that marble based concretes are best for gamma ray attenuation and nanomaterials based compositions are top if lesser thickness is to employ for attenuation. On the basis of acquired knowledge from literature, the present work will highlight the future perspectives of concretes as shielding materials and would be quite helpful for the selection of appropriate compositions by the community interacting directly or indirectly with ionizing radiations.</div></div>\",\"PeriodicalId\":20617,\"journal\":{\"name\":\"Progress in Nuclear Energy\",\"volume\":\"178 \",\"pages\":\"Article 105502\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0149197024004529\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024004529","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

辐射屏蔽材料是抑制电离辐射(尤其是高能伽马射线和穿透性中子)有害影响的关键部件。本综述包括最古老的建筑材料--混凝土,它通过引入各种添加剂、集料和纳米材料,以传统形式获得不同的成分。本研究的目的是对通过各种实验和计算方法报告的各种混凝土进行批判性审查和比较,从而突出不同混凝土类别中的最佳成分。为此,以图表形式比较了在 662、1173 和 1332 千伏有用伽马能量下的基本屏蔽参数,即质量衰减系数(MAC)和半值层(HVL)。此外,还通过与不同混凝土的快速中子去除截面(FNRCS)数据相对应的曲线图,研究了屏蔽混凝土对中子的防护能力。最后,考虑到相互作用参数,即质量停止力和投射范围,研究了花岗岩和火成岩样品对轻重带电粒子的屏蔽能力。除此之外,本文还列举了辐射屏蔽混凝土的许多先进应用、混凝土混合物中不同形式废物的合理利用以及混凝土试样的一些不足之处。从各种混凝土的对比图中可以得出结论,大理石基混凝土最适合用于伽马射线衰减,而纳米材料基混凝土则最适合用于厚度较小的衰减。根据从文献中获得的知识,本研究将突出混凝土作为屏蔽材料的未来前景,并将对直接或间接接触电离辐射的群体选择适当的成分大有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficacy of advanced concretes for attenuation of ionizing radiations: A comprehensive review and comparison
Radiation shielding materials are key components to suppress the hazardous effects of ionizing radiation, especially energetic gamma rays and penetrative neutrons. This review includes the most ancient building material, concrete, in its different composition obtained by introducing a variety of additives, aggregates and nanomaterials in its conventional form. The objective of present work is to critically review and compare the variety of concretes, reported through various experimental and computational methods, so that the best composition among diverse concrete categories can be highlighted. For this purpose the essential shielding parameters namely mass attenuation coefficient (MAC) and half value layer (HVL) at useful gamma energies of 662, 1173 and 1332 keV have been compared graphically. The protective shielding concretes against neutrons have also been studied through a plot corresponding to Fast Neutron Removal Cross-sections (FNRCS) data of different concretes. Lastly, shielding competency of granite and pyroclastic rock samples for light and heavy charged particles have been included by taking into consideration the interaction parameters namely mass stopping power and projected range. Apart from this, numerous advanced applications of radiation shielding concretes, proper utilization of different forms of waste in concrete mix and few shortcomings of concrete specimens are also listed in this review paper. From the comparative plots of various concretes it is concluded that marble based concretes are best for gamma ray attenuation and nanomaterials based compositions are top if lesser thickness is to employ for attenuation. On the basis of acquired knowledge from literature, the present work will highlight the future perspectives of concretes as shielding materials and would be quite helpful for the selection of appropriate compositions by the community interacting directly or indirectly with ionizing radiations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Nuclear Energy
Progress in Nuclear Energy 工程技术-核科学技术
CiteScore
5.30
自引率
14.80%
发文量
331
审稿时长
3.5 months
期刊介绍: Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field. Please note the following: 1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy. 2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc. 3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信