{"title":"贝尔吉卡丘陵漂移的形态沉积演化:与冷水珊瑚丘相关的等高线沉积系统发展的控制因素","authors":"","doi":"10.1016/j.margeo.2024.107410","DOIUrl":null,"url":null,"abstract":"<div><div>Small-scale contourite drift is an important component of continental margins that can record information about complex oceanographic processes. The Belgica Mound Drift is one example of a small-scale contourite drift. It is formed under the influence of cold-water coral (CWC) mounds and represents one of the most distal contouritic expressions influenced by the Mediterranean Outflow Water (MOW) in the NE Atlantic Ocean. Three distinct evolutionary stages have been identified from new high-resolution pseudo-3D reflection seismic data, each associated with a significant change in paleoceanography, affecting both bottom-current intensity and sediment input. The pre-drift stage (Pliocene–Early Pleistocene) corresponds to the regional RD1 erosive event, which was caused by the reintroduction of the MOW in the Porcupine Seabight, creating a distinct paleotopography that will influence all ensuing sedimentary processes. The second stage (Early Pleistocene–Middle Pleistocene) is the contourite drift inception in two distinct centres of growth, strongly steered by topographic obstacles such as the CWC mounds. During the third and final stage (Middle Pleistocene–present day), the contourite drift is developed under a more stable but less dynamic environment, characterised by more continuous and mounded aggradational stratification. The final stage of the contourite drift is related to the Middle Pleistocene Transition, with a spatially variable reduction in the MOW-related bottom currents and sediment input. The spatial and temporal evolution of this drift shows that its present-day morphology is controlled by the location of initial growth. Evolving moat morphology indicates that the intensity of the bottom currents generally increases during the drift evolution.</div><div>This research presents a crucial paradigm for advancing our knowledge of elucidating the complexities of smaller-sized contourite systems in diverse oceanic environments.</div></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphosedimentary evolution of the Belgica Mound Drift: Controls on contourite depositional system development in association with cold-water coral mounds\",\"authors\":\"\",\"doi\":\"10.1016/j.margeo.2024.107410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Small-scale contourite drift is an important component of continental margins that can record information about complex oceanographic processes. The Belgica Mound Drift is one example of a small-scale contourite drift. It is formed under the influence of cold-water coral (CWC) mounds and represents one of the most distal contouritic expressions influenced by the Mediterranean Outflow Water (MOW) in the NE Atlantic Ocean. Three distinct evolutionary stages have been identified from new high-resolution pseudo-3D reflection seismic data, each associated with a significant change in paleoceanography, affecting both bottom-current intensity and sediment input. The pre-drift stage (Pliocene–Early Pleistocene) corresponds to the regional RD1 erosive event, which was caused by the reintroduction of the MOW in the Porcupine Seabight, creating a distinct paleotopography that will influence all ensuing sedimentary processes. The second stage (Early Pleistocene–Middle Pleistocene) is the contourite drift inception in two distinct centres of growth, strongly steered by topographic obstacles such as the CWC mounds. During the third and final stage (Middle Pleistocene–present day), the contourite drift is developed under a more stable but less dynamic environment, characterised by more continuous and mounded aggradational stratification. The final stage of the contourite drift is related to the Middle Pleistocene Transition, with a spatially variable reduction in the MOW-related bottom currents and sediment input. The spatial and temporal evolution of this drift shows that its present-day morphology is controlled by the location of initial growth. Evolving moat morphology indicates that the intensity of the bottom currents generally increases during the drift evolution.</div><div>This research presents a crucial paradigm for advancing our knowledge of elucidating the complexities of smaller-sized contourite systems in diverse oceanic environments.</div></div>\",\"PeriodicalId\":18229,\"journal\":{\"name\":\"Marine Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025322724001944\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724001944","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Morphosedimentary evolution of the Belgica Mound Drift: Controls on contourite depositional system development in association with cold-water coral mounds
Small-scale contourite drift is an important component of continental margins that can record information about complex oceanographic processes. The Belgica Mound Drift is one example of a small-scale contourite drift. It is formed under the influence of cold-water coral (CWC) mounds and represents one of the most distal contouritic expressions influenced by the Mediterranean Outflow Water (MOW) in the NE Atlantic Ocean. Three distinct evolutionary stages have been identified from new high-resolution pseudo-3D reflection seismic data, each associated with a significant change in paleoceanography, affecting both bottom-current intensity and sediment input. The pre-drift stage (Pliocene–Early Pleistocene) corresponds to the regional RD1 erosive event, which was caused by the reintroduction of the MOW in the Porcupine Seabight, creating a distinct paleotopography that will influence all ensuing sedimentary processes. The second stage (Early Pleistocene–Middle Pleistocene) is the contourite drift inception in two distinct centres of growth, strongly steered by topographic obstacles such as the CWC mounds. During the third and final stage (Middle Pleistocene–present day), the contourite drift is developed under a more stable but less dynamic environment, characterised by more continuous and mounded aggradational stratification. The final stage of the contourite drift is related to the Middle Pleistocene Transition, with a spatially variable reduction in the MOW-related bottom currents and sediment input. The spatial and temporal evolution of this drift shows that its present-day morphology is controlled by the location of initial growth. Evolving moat morphology indicates that the intensity of the bottom currents generally increases during the drift evolution.
This research presents a crucial paradigm for advancing our knowledge of elucidating the complexities of smaller-sized contourite systems in diverse oceanic environments.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.