{"title":"缺陷群为铃木 2 群的嵌块","authors":"Charles W. Eaton","doi":"10.1016/j.jalgebra.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>We classify up to Morita equivalence all blocks whose defect groups are Suzuki 2-groups. The classification holds for blocks over a suitable discrete valuation ring as well as for those over an algebraically closed field, and in fact holds up to basic Morita equivalence. As a consequence Donovan's conjecture holds for Suzuki 2-groups. A corollary of the proof is that Suzuki Sylow 2-subgroups of finite groups with no nontrivial odd order normal subgroup are trivial intersection.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blocks whose defect groups are Suzuki 2-groups\",\"authors\":\"Charles W. Eaton\",\"doi\":\"10.1016/j.jalgebra.2024.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We classify up to Morita equivalence all blocks whose defect groups are Suzuki 2-groups. The classification holds for blocks over a suitable discrete valuation ring as well as for those over an algebraically closed field, and in fact holds up to basic Morita equivalence. As a consequence Donovan's conjecture holds for Suzuki 2-groups. A corollary of the proof is that Suzuki Sylow 2-subgroups of finite groups with no nontrivial odd order normal subgroup are trivial intersection.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002186932400557X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002186932400557X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We classify up to Morita equivalence all blocks whose defect groups are Suzuki 2-groups. The classification holds for blocks over a suitable discrete valuation ring as well as for those over an algebraically closed field, and in fact holds up to basic Morita equivalence. As a consequence Donovan's conjecture holds for Suzuki 2-groups. A corollary of the proof is that Suzuki Sylow 2-subgroups of finite groups with no nontrivial odd order normal subgroup are trivial intersection.