仿射 GLS 算法局部自由表示的通用分类

Pub Date : 2024-10-11 DOI:10.1016/j.jalgebra.2024.09.013
Calvin Pfeifer
{"title":"仿射 GLS 算法局部自由表示的通用分类","authors":"Calvin Pfeifer","doi":"10.1016/j.jalgebra.2024.09.013","DOIUrl":null,"url":null,"abstract":"<div><div>Throughout, let <em>K</em> be an algebraically closed field of characteristic 0. We provide a generic classification of locally free representations of Geiß-Leclerc-Schröer's algebras <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> associated to affine Cartan matrices <em>C</em> with minimal symmetrizer <em>D</em> and acyclic orientation Ω. Affine GLS algebras are “smooth” degenerations of tame hereditary algebras and as such their representation theory is presumably still tractable. Indeed, we observe several “tame” phenomena of affine GLS algebras even though they are in general representation wild. For the GLS algebras of type <span><math><msub><mrow><mover><mrow><mi>BC</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span> we achieve a classification of all stable representations. For general GLS algebras of affine type, we construct a 1-parameter family of representations stable with respect to the defect. Our construction is based on a generalized one-point extension technique. This confirms in particular <em>τ</em>-tilted versions of the second Brauer-Thrall Conjecture recently raised by Mousavand and Schroll-Treffinger-Valdivieso for the class of GLS algebras. Finally, we show that generically every locally free <em>H</em>-module is isomorphic to a direct sum of <em>τ</em>-rigid modules and modules from our 1-parameter family. This generalizes Kac's canonical decomposition from the symmetric to the symmetrizable case in affine types and we obtain such a decomposition by folding the canonical decomposition of dimension vectors over path algebras. As a corollary we obtain that affine GLS algebras are <em>E</em>-tame in the sense of Derksen-Fei and Asai-Iyama.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generic classification of locally free representations of affine GLS algebras\",\"authors\":\"Calvin Pfeifer\",\"doi\":\"10.1016/j.jalgebra.2024.09.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Throughout, let <em>K</em> be an algebraically closed field of characteristic 0. We provide a generic classification of locally free representations of Geiß-Leclerc-Schröer's algebras <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>K</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></math></span> associated to affine Cartan matrices <em>C</em> with minimal symmetrizer <em>D</em> and acyclic orientation Ω. Affine GLS algebras are “smooth” degenerations of tame hereditary algebras and as such their representation theory is presumably still tractable. Indeed, we observe several “tame” phenomena of affine GLS algebras even though they are in general representation wild. For the GLS algebras of type <span><math><msub><mrow><mover><mrow><mi>BC</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span> we achieve a classification of all stable representations. For general GLS algebras of affine type, we construct a 1-parameter family of representations stable with respect to the defect. Our construction is based on a generalized one-point extension technique. This confirms in particular <em>τ</em>-tilted versions of the second Brauer-Thrall Conjecture recently raised by Mousavand and Schroll-Treffinger-Valdivieso for the class of GLS algebras. Finally, we show that generically every locally free <em>H</em>-module is isomorphic to a direct sum of <em>τ</em>-rigid modules and modules from our 1-parameter family. This generalizes Kac's canonical decomposition from the symmetric to the symmetrizable case in affine types and we obtain such a decomposition by folding the canonical decomposition of dimension vectors over path algebras. As a corollary we obtain that affine GLS algebras are <em>E</em>-tame in the sense of Derksen-Fei and Asai-Iyama.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自始至终,让 K 是一个特征为 0 的代数闭域。我们提供了 Geiß-Leclerc-Schröer 代数的局部自由表示 HK(C,D,Ω)的一般分类,这些表示与具有最小对称器 D 和非循环方向 Ω 的仿射 Cartan 矩阵 C 相关联。仿射 GLS 代数是驯服遗传代数的 "平滑 "退化,因此,它们的表示理论可能仍然是可行的。事实上,我们观察到仿射GLS代数有几种 "驯服 "现象,尽管它们在一般表示上是狂野的。对于 BC˜1 类型的 GLS 对象,我们对所有稳定表示进行了分类。对于仿射型的一般 GLS 结构,我们构建了一个关于缺陷的稳定表示的单参数族。我们的构造基于广义的一点扩展技术。这尤其证实了最近由穆萨万德(Mousavand)和施罗尔-特雷芬格-瓦尔德维索(Schroll-Treffinger-Valdivieso)提出的关于 GLS 对象的第二个布劳尔-特拉尔猜想的τ-倾斜版本。最后,我们证明,一般来说,每个局部自由 H 模块都与τ-刚性模块和我们的 1 参数族模块的直和同构。我们通过折叠路径代数上维向量的规范分解,得到了这种分解。作为一个推论,我们得到仿射 GLS 代数是 Derksen-Fei 和 Asai-Iyama 意义上的 E-tame 代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A generic classification of locally free representations of affine GLS algebras
Throughout, let K be an algebraically closed field of characteristic 0. We provide a generic classification of locally free representations of Geiß-Leclerc-Schröer's algebras HK(C,D,Ω) associated to affine Cartan matrices C with minimal symmetrizer D and acyclic orientation Ω. Affine GLS algebras are “smooth” degenerations of tame hereditary algebras and as such their representation theory is presumably still tractable. Indeed, we observe several “tame” phenomena of affine GLS algebras even though they are in general representation wild. For the GLS algebras of type BC˜1 we achieve a classification of all stable representations. For general GLS algebras of affine type, we construct a 1-parameter family of representations stable with respect to the defect. Our construction is based on a generalized one-point extension technique. This confirms in particular τ-tilted versions of the second Brauer-Thrall Conjecture recently raised by Mousavand and Schroll-Treffinger-Valdivieso for the class of GLS algebras. Finally, we show that generically every locally free H-module is isomorphic to a direct sum of τ-rigid modules and modules from our 1-parameter family. This generalizes Kac's canonical decomposition from the symmetric to the symmetrizable case in affine types and we obtain such a decomposition by folding the canonical decomposition of dimension vectors over path algebras. As a corollary we obtain that affine GLS algebras are E-tame in the sense of Derksen-Fei and Asai-Iyama.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信