有限域上的光滑对称系统及其应用

Pub Date : 2024-10-11 DOI:10.1016/j.jalgebra.2024.09.011
Nardo Giménez , Guillermo Matera , Mariana Pérez , Melina Privitelli
{"title":"有限域上的光滑对称系统及其应用","authors":"Nardo Giménez ,&nbsp;Guillermo Matera ,&nbsp;Mariana Pérez ,&nbsp;Melina Privitelli","doi":"10.1016/j.jalgebra.2024.09.011","DOIUrl":null,"url":null,"abstract":"<div><div>We study the set of common <span><math><msub><mrow><mi>F</mi></mrow><mrow><mspace></mspace><mi>q</mi></mrow></msub></math></span>–rational solutions of “smooth” systems of multivariate symmetric polynomials with coefficients in a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mspace></mspace><mi>q</mi></mrow></msub></math></span>. We show that, under certain conditions, the set of common solutions of such polynomial systems over the algebraic closure of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mspace></mspace><mi>q</mi></mrow></msub></math></span> has a “good” geometric behavior. This allows us to obtain precise estimates on the corresponding number of common <span><math><msub><mrow><mi>F</mi></mrow><mrow><mspace></mspace><mi>q</mi></mrow></msub></math></span>–rational solutions. In the case of hypersurfaces we are able to strengthen the results. We illustrate the interest of these estimates through their application to certain classical combinatorial problems over finite fields.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth symmetric systems over a finite field and applications\",\"authors\":\"Nardo Giménez ,&nbsp;Guillermo Matera ,&nbsp;Mariana Pérez ,&nbsp;Melina Privitelli\",\"doi\":\"10.1016/j.jalgebra.2024.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the set of common <span><math><msub><mrow><mi>F</mi></mrow><mrow><mspace></mspace><mi>q</mi></mrow></msub></math></span>–rational solutions of “smooth” systems of multivariate symmetric polynomials with coefficients in a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mspace></mspace><mi>q</mi></mrow></msub></math></span>. We show that, under certain conditions, the set of common solutions of such polynomial systems over the algebraic closure of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mspace></mspace><mi>q</mi></mrow></msub></math></span> has a “good” geometric behavior. This allows us to obtain precise estimates on the corresponding number of common <span><math><msub><mrow><mi>F</mi></mrow><mrow><mspace></mspace><mi>q</mi></mrow></msub></math></span>–rational solutions. In the case of hypersurfaces we are able to strengthen the results. We illustrate the interest of these estimates through their application to certain classical combinatorial problems over finite fields.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了系数在有限域 Fq 中的多变量对称多项式 "平滑 "系统的常见 Fq 有理解集。我们证明,在某些条件下,Fq 代数闭包上的此类多项式系统的公共解集具有 "良好的 "几何行为。这使我们能够获得关于 Fq 有理公共解的相应数量的精确估计。在超曲面的情况下,我们能够加强这些结果。我们通过将这些估计值应用于有限域上的某些经典组合问题来说明它们的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Smooth symmetric systems over a finite field and applications
We study the set of common Fq–rational solutions of “smooth” systems of multivariate symmetric polynomials with coefficients in a finite field Fq. We show that, under certain conditions, the set of common solutions of such polynomial systems over the algebraic closure of Fq has a “good” geometric behavior. This allows us to obtain precise estimates on the corresponding number of common Fq–rational solutions. In the case of hypersurfaces we are able to strengthen the results. We illustrate the interest of these estimates through their application to certain classical combinatorial problems over finite fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信