用 NMF 提取的新颖色彩空间表示法分割彩色图像

Ciro Castiello , Nicoletta Del Buono , Flavia Esposito
{"title":"用 NMF 提取的新颖色彩空间表示法分割彩色图像","authors":"Ciro Castiello ,&nbsp;Nicoletta Del Buono ,&nbsp;Flavia Esposito","doi":"10.1016/j.jcmds.2024.100104","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the task of separating pixels in color image into background and foreground classes. Using the machine learning technique known as Nonnegative Matrix Factorization, data pertaining to different color channels – selected by color spaces – are combined, and a novel space representation is extracted.</div><div>The novel representation of the image includes additional information, namely “metacolor”, which could be related to foreground and background and adopted to improve binary segmentation of the investigated image. In both qualitative and quantitative experiments, the use of novel color space representation produces some improvements in the binary segmentation results when it compared to those obtained applying common simpler thresholding algorithms directly to the original image.</div></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"13 ","pages":"Article 100104"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel color space representation extracted by NMF to segment a color image\",\"authors\":\"Ciro Castiello ,&nbsp;Nicoletta Del Buono ,&nbsp;Flavia Esposito\",\"doi\":\"10.1016/j.jcmds.2024.100104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper considers the task of separating pixels in color image into background and foreground classes. Using the machine learning technique known as Nonnegative Matrix Factorization, data pertaining to different color channels – selected by color spaces – are combined, and a novel space representation is extracted.</div><div>The novel representation of the image includes additional information, namely “metacolor”, which could be related to foreground and background and adopted to improve binary segmentation of the investigated image. In both qualitative and quantitative experiments, the use of novel color space representation produces some improvements in the binary segmentation results when it compared to those obtained applying common simpler thresholding algorithms directly to the original image.</div></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"13 \",\"pages\":\"Article 100104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415824000154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415824000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了将彩色图像中的像素分为背景和前景两类的任务。图像的新表示法包括额外的信息,即 "元颜色"(metacolor),这些信息可能与前景和背景相关,并可用于改进所研究图像的二元分割。在定性和定量实验中,与直接对原始图像应用普通的简单阈值算法相比,使用新颖的色彩空间表示法可在二值分割结果上产生一些改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel color space representation extracted by NMF to segment a color image
This paper considers the task of separating pixels in color image into background and foreground classes. Using the machine learning technique known as Nonnegative Matrix Factorization, data pertaining to different color channels – selected by color spaces – are combined, and a novel space representation is extracted.
The novel representation of the image includes additional information, namely “metacolor”, which could be related to foreground and background and adopted to improve binary segmentation of the investigated image. In both qualitative and quantitative experiments, the use of novel color space representation produces some improvements in the binary segmentation results when it compared to those obtained applying common simpler thresholding algorithms directly to the original image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信