{"title":"用于解决均值场博弈的在线交互式物理信息对抗网络","authors":"Weishi Yin , Zhengxuan Shen , Pinchao Meng , Hongyu Liu","doi":"10.1016/j.enganabound.2024.106002","DOIUrl":null,"url":null,"abstract":"<div><div>We propose an online interactive physics-informed adversarial network (IPIAN) to address mean field games (MFGs) from the perspective of physics-informed interaction. In this study, we model the interaction between agents as a physics-informed exchange process, quantifying the evolution and distribution of individual strategy choices. We utilize the variational dyadic structure of MFGs to transform the dynamic game problem into a static optimization problem, subsequently employing the adversarial network to solve the mean field games. Based on the generative adversarial framework, two online physics-informed networks solve the value and density functions. These networks are trained to approximate the solution of MFGs through adversarial means. Additionally, a self-attention mechanism is introduced to enhance the focus on strategic physics-informed, thereby improving the expressiveness of IPIAN. Numerical experiments validate the effectiveness of IPIAN in solving high-dimensional mean field game models, as demonstrated by obstacle avoidance experiments with a quadrotor in various scenarios.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"169 ","pages":"Article 106002"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An online interactive physics-informed adversarial network for solving mean field games\",\"authors\":\"Weishi Yin , Zhengxuan Shen , Pinchao Meng , Hongyu Liu\",\"doi\":\"10.1016/j.enganabound.2024.106002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose an online interactive physics-informed adversarial network (IPIAN) to address mean field games (MFGs) from the perspective of physics-informed interaction. In this study, we model the interaction between agents as a physics-informed exchange process, quantifying the evolution and distribution of individual strategy choices. We utilize the variational dyadic structure of MFGs to transform the dynamic game problem into a static optimization problem, subsequently employing the adversarial network to solve the mean field games. Based on the generative adversarial framework, two online physics-informed networks solve the value and density functions. These networks are trained to approximate the solution of MFGs through adversarial means. Additionally, a self-attention mechanism is introduced to enhance the focus on strategic physics-informed, thereby improving the expressiveness of IPIAN. Numerical experiments validate the effectiveness of IPIAN in solving high-dimensional mean field game models, as demonstrated by obstacle avoidance experiments with a quadrotor in various scenarios.</div></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":\"169 \",\"pages\":\"Article 106002\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799724004752\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724004752","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
An online interactive physics-informed adversarial network for solving mean field games
We propose an online interactive physics-informed adversarial network (IPIAN) to address mean field games (MFGs) from the perspective of physics-informed interaction. In this study, we model the interaction between agents as a physics-informed exchange process, quantifying the evolution and distribution of individual strategy choices. We utilize the variational dyadic structure of MFGs to transform the dynamic game problem into a static optimization problem, subsequently employing the adversarial network to solve the mean field games. Based on the generative adversarial framework, two online physics-informed networks solve the value and density functions. These networks are trained to approximate the solution of MFGs through adversarial means. Additionally, a self-attention mechanism is introduced to enhance the focus on strategic physics-informed, thereby improving the expressiveness of IPIAN. Numerical experiments validate the effectiveness of IPIAN in solving high-dimensional mean field game models, as demonstrated by obstacle avoidance experiments with a quadrotor in various scenarios.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.