Marcin Przewięźlikowski , Mateusz Pyla , Bartosz Zieliński , Bartłomiej Twardowski , Jacek Tabor , Marek Śmieja
{"title":"带条件投影仪的增强感知自我监督学习","authors":"Marcin Przewięźlikowski , Mateusz Pyla , Bartosz Zieliński , Bartłomiej Twardowski , Jacek Tabor , Marek Śmieja","doi":"10.1016/j.knosys.2024.112572","DOIUrl":null,"url":null,"abstract":"<div><div>Self-supervised learning (SSL) is a powerful technique for learning from unlabeled data. By learning to remain invariant to applied data augmentations, methods such as SimCLR and MoCo can reach quality on par with supervised approaches. However, this invariance may be detrimental for solving downstream tasks that depend on traits affected by augmentations used during pretraining, such as color. In this paper, we propose to foster sensitivity to such characteristics in the representation space by modifying the projector network, a common component of self-supervised architectures. Specifically, we supplement the projector with information about augmentations applied to images. For the projector to take advantage of this auxiliary conditioning when solving the SSL task, the feature extractor learns to preserve the augmentation information in its representations. Our approach, coined <strong>C</strong>onditional <strong>A</strong>ugmentation-aware <strong>S</strong>elf-<strong>s</strong>upervised <strong>Le</strong>arning (CASSLE), is directly applicable to typical joint-embedding SSL methods regardless of their objective functions. Moreover, it does not require major changes in the network architecture or prior knowledge of downstream tasks. In addition to an analysis of sensitivity towards different data augmentations, we conduct a series of experiments, which show that CASSLE improves over various SSL methods, reaching state-of-the-art performance in multiple downstream tasks. <span><span><sup>1</sup></span></span> <span><span><sup>2</sup></span></span> <span><span><sup>3</sup></span></span></div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmentation-aware self-supervised learning with conditioned projector\",\"authors\":\"Marcin Przewięźlikowski , Mateusz Pyla , Bartosz Zieliński , Bartłomiej Twardowski , Jacek Tabor , Marek Śmieja\",\"doi\":\"10.1016/j.knosys.2024.112572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Self-supervised learning (SSL) is a powerful technique for learning from unlabeled data. By learning to remain invariant to applied data augmentations, methods such as SimCLR and MoCo can reach quality on par with supervised approaches. However, this invariance may be detrimental for solving downstream tasks that depend on traits affected by augmentations used during pretraining, such as color. In this paper, we propose to foster sensitivity to such characteristics in the representation space by modifying the projector network, a common component of self-supervised architectures. Specifically, we supplement the projector with information about augmentations applied to images. For the projector to take advantage of this auxiliary conditioning when solving the SSL task, the feature extractor learns to preserve the augmentation information in its representations. Our approach, coined <strong>C</strong>onditional <strong>A</strong>ugmentation-aware <strong>S</strong>elf-<strong>s</strong>upervised <strong>Le</strong>arning (CASSLE), is directly applicable to typical joint-embedding SSL methods regardless of their objective functions. Moreover, it does not require major changes in the network architecture or prior knowledge of downstream tasks. In addition to an analysis of sensitivity towards different data augmentations, we conduct a series of experiments, which show that CASSLE improves over various SSL methods, reaching state-of-the-art performance in multiple downstream tasks. <span><span><sup>1</sup></span></span> <span><span><sup>2</sup></span></span> <span><span><sup>3</sup></span></span></div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124012061\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012061","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Augmentation-aware self-supervised learning with conditioned projector
Self-supervised learning (SSL) is a powerful technique for learning from unlabeled data. By learning to remain invariant to applied data augmentations, methods such as SimCLR and MoCo can reach quality on par with supervised approaches. However, this invariance may be detrimental for solving downstream tasks that depend on traits affected by augmentations used during pretraining, such as color. In this paper, we propose to foster sensitivity to such characteristics in the representation space by modifying the projector network, a common component of self-supervised architectures. Specifically, we supplement the projector with information about augmentations applied to images. For the projector to take advantage of this auxiliary conditioning when solving the SSL task, the feature extractor learns to preserve the augmentation information in its representations. Our approach, coined Conditional Augmentation-aware Self-supervised Learning (CASSLE), is directly applicable to typical joint-embedding SSL methods regardless of their objective functions. Moreover, it does not require major changes in the network architecture or prior knowledge of downstream tasks. In addition to an analysis of sensitivity towards different data augmentations, we conduct a series of experiments, which show that CASSLE improves over various SSL methods, reaching state-of-the-art performance in multiple downstream tasks. 123
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.