带有归一化流量的变异贝叶斯优化实验设计

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Jiayuan Dong , Christian Jacobsen , Mehdi Khalloufi , Maryam Akram , Wanjiao Liu , Karthik Duraisamy , Xun Huan
{"title":"带有归一化流量的变异贝叶斯优化实验设计","authors":"Jiayuan Dong ,&nbsp;Christian Jacobsen ,&nbsp;Mehdi Khalloufi ,&nbsp;Maryam Akram ,&nbsp;Wanjiao Liu ,&nbsp;Karthik Duraisamy ,&nbsp;Xun Huan","doi":"10.1016/j.cma.2024.117457","DOIUrl":null,"url":null,"abstract":"<div><div>Bayesian optimal experimental design (OED) seeks experiments that maximize the expected information gain (EIG) in model parameters. Directly estimating the EIG using nested Monte Carlo is computationally expensive and requires an explicit likelihood. Variational OED (vOED), in contrast, estimates a lower bound of the EIG without likelihood evaluations by approximating the posterior distributions with variational forms, and then tightens the bound by optimizing its variational parameters. We introduce the use of normalizing flows (NFs) for representing variational distributions in vOED; we call this approach vOED-NFs. Specifically, we adopt NFs with a conditional invertible neural network architecture built from compositions of coupling layers, and enhanced with a summary network for data dimension reduction. We present Monte Carlo estimators to the lower bound along with gradient expressions to enable a gradient-based simultaneous optimization of the variational parameters and the design variables. The vOED-NFs algorithm is then validated in two benchmark problems, and demonstrated on a partial differential equation-governed application of cathodic electrophoretic deposition and an implicit likelihood case with stochastic modeling of aphid population. The findings suggest that a composition of 4–5 coupling layers is able to achieve lower EIG estimation bias, under a fixed budget of forward model runs, compared to previous approaches. The resulting NFs produce approximate posteriors that agree well with the true posteriors, able to capture non-Gaussian and multi-modal features effectively.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117457"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational Bayesian optimal experimental design with normalizing flows\",\"authors\":\"Jiayuan Dong ,&nbsp;Christian Jacobsen ,&nbsp;Mehdi Khalloufi ,&nbsp;Maryam Akram ,&nbsp;Wanjiao Liu ,&nbsp;Karthik Duraisamy ,&nbsp;Xun Huan\",\"doi\":\"10.1016/j.cma.2024.117457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bayesian optimal experimental design (OED) seeks experiments that maximize the expected information gain (EIG) in model parameters. Directly estimating the EIG using nested Monte Carlo is computationally expensive and requires an explicit likelihood. Variational OED (vOED), in contrast, estimates a lower bound of the EIG without likelihood evaluations by approximating the posterior distributions with variational forms, and then tightens the bound by optimizing its variational parameters. We introduce the use of normalizing flows (NFs) for representing variational distributions in vOED; we call this approach vOED-NFs. Specifically, we adopt NFs with a conditional invertible neural network architecture built from compositions of coupling layers, and enhanced with a summary network for data dimension reduction. We present Monte Carlo estimators to the lower bound along with gradient expressions to enable a gradient-based simultaneous optimization of the variational parameters and the design variables. The vOED-NFs algorithm is then validated in two benchmark problems, and demonstrated on a partial differential equation-governed application of cathodic electrophoretic deposition and an implicit likelihood case with stochastic modeling of aphid population. The findings suggest that a composition of 4–5 coupling layers is able to achieve lower EIG estimation bias, under a fixed budget of forward model runs, compared to previous approaches. The resulting NFs produce approximate posteriors that agree well with the true posteriors, able to capture non-Gaussian and multi-modal features effectively.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"433 \",\"pages\":\"Article 117457\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524007126\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007126","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

贝叶斯最优实验设计(OED)寻求模型参数预期信息增益(EIG)最大化的实验。使用嵌套蒙特卡罗直接估计 EIG 的计算成本很高,而且需要明确的似然。与此相反,变异 OED(vOED)通过用变异形式逼近后验分布来估计 EIG 的下限,而无需进行似然法评估,然后通过优化其变异参数来收紧下限。我们引入了归一化流(NFs)来表示 vOED 中的变分分布;我们称这种方法为 vOED-NFs。具体来说,我们采用了由耦合层组成的条件可逆神经网络架构的 NFs,并通过一个用于降低数据维度的汇总网络进行了增强。我们提出了蒙特卡洛下界估计值和梯度表达式,以便对变分参数和设计变量进行基于梯度的同步优化。然后在两个基准问题中验证了 vOED-NFs 算法,并在阴极电泳沉积的偏微分方程控制应用和蚜虫种群随机建模的隐含似然案例中进行了演示。研究结果表明,与以前的方法相比,在前向模型运行的固定预算下,4-5 个耦合层的组合能够实现较低的 EIG 估计偏差。由此产生的 NF 产生的近似后验与真实后验非常吻合,能够有效捕捉非高斯和多模式特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Bayesian optimal experimental design with normalizing flows
Bayesian optimal experimental design (OED) seeks experiments that maximize the expected information gain (EIG) in model parameters. Directly estimating the EIG using nested Monte Carlo is computationally expensive and requires an explicit likelihood. Variational OED (vOED), in contrast, estimates a lower bound of the EIG without likelihood evaluations by approximating the posterior distributions with variational forms, and then tightens the bound by optimizing its variational parameters. We introduce the use of normalizing flows (NFs) for representing variational distributions in vOED; we call this approach vOED-NFs. Specifically, we adopt NFs with a conditional invertible neural network architecture built from compositions of coupling layers, and enhanced with a summary network for data dimension reduction. We present Monte Carlo estimators to the lower bound along with gradient expressions to enable a gradient-based simultaneous optimization of the variational parameters and the design variables. The vOED-NFs algorithm is then validated in two benchmark problems, and demonstrated on a partial differential equation-governed application of cathodic electrophoretic deposition and an implicit likelihood case with stochastic modeling of aphid population. The findings suggest that a composition of 4–5 coupling layers is able to achieve lower EIG estimation bias, under a fixed budget of forward model runs, compared to previous approaches. The resulting NFs produce approximate posteriors that agree well with the true posteriors, able to capture non-Gaussian and multi-modal features effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信