{"title":"设计和实施主动负载测试台,用于对工业应用中的伺服机构进行高精度评估","authors":"Alessio Tutarini , Pietro Bilancia , Jhon Freddy Rodríguez León , Davide Viappiani , Marcello Pellicciari","doi":"10.1016/j.jii.2024.100696","DOIUrl":null,"url":null,"abstract":"<div><div>Position-controlled servomechanisms are the core elements of flexible manufacturing plants, primarily utilized to actuate robotic systems and automated machines. To match specific torque and costs requirements, typical servomechanism arrangements comprise precision reducers, which introduce motion errors that heavily limit the final performance achievable. Such errors are complex to model and depend from speed, dynamic loading conditions and temperature. Accurate characterization is fundamental to develop digital twins and advanced control strategies aimed at their active prediction and compensation. To properly assess the servomechanisms behavior and elaborate high-fidelity virtual models, instrumented test rigs have been proposed which can replicate the time-varying working conditions encountered in real industrial environments. In this context, the present paper reports about a novel engineering method for developing an active loading apparatus, namely a programmable mechatronic device that can deliver custom loads in a highly dynamic manner. The proposed system, consisting of a secondary servomotor and related rotating vector reducer, is integrated and synchronized within an existing instrumented test rig and is controlled in torque mode via a programmable logic controller. The paper mainly focuses on the description of the implemented closed-loop control and on the related tuning and calibration processes, demonstrating that the proposed solutions avoid important measurement errors that could compromise the final effectiveness of the system. The study finally explores the potential benefits of introducing a filter to further enhance system performance. At last, to prove the importance of stabilizing the rig and demonstrate the influence of the control parameters on its measurements, a standard test aimed at assessing the reducer transmission error is conducted adopting different parameter settings.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"42 ","pages":"Article 100696"},"PeriodicalIF":10.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and implementation of an active load test rig for high-precision evaluation of servomechanisms in industrial applications\",\"authors\":\"Alessio Tutarini , Pietro Bilancia , Jhon Freddy Rodríguez León , Davide Viappiani , Marcello Pellicciari\",\"doi\":\"10.1016/j.jii.2024.100696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Position-controlled servomechanisms are the core elements of flexible manufacturing plants, primarily utilized to actuate robotic systems and automated machines. To match specific torque and costs requirements, typical servomechanism arrangements comprise precision reducers, which introduce motion errors that heavily limit the final performance achievable. Such errors are complex to model and depend from speed, dynamic loading conditions and temperature. Accurate characterization is fundamental to develop digital twins and advanced control strategies aimed at their active prediction and compensation. To properly assess the servomechanisms behavior and elaborate high-fidelity virtual models, instrumented test rigs have been proposed which can replicate the time-varying working conditions encountered in real industrial environments. In this context, the present paper reports about a novel engineering method for developing an active loading apparatus, namely a programmable mechatronic device that can deliver custom loads in a highly dynamic manner. The proposed system, consisting of a secondary servomotor and related rotating vector reducer, is integrated and synchronized within an existing instrumented test rig and is controlled in torque mode via a programmable logic controller. The paper mainly focuses on the description of the implemented closed-loop control and on the related tuning and calibration processes, demonstrating that the proposed solutions avoid important measurement errors that could compromise the final effectiveness of the system. The study finally explores the potential benefits of introducing a filter to further enhance system performance. At last, to prove the importance of stabilizing the rig and demonstrate the influence of the control parameters on its measurements, a standard test aimed at assessing the reducer transmission error is conducted adopting different parameter settings.</div></div>\",\"PeriodicalId\":55975,\"journal\":{\"name\":\"Journal of Industrial Information Integration\",\"volume\":\"42 \",\"pages\":\"Article 100696\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Information Integration\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452414X24001390\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001390","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Design and implementation of an active load test rig for high-precision evaluation of servomechanisms in industrial applications
Position-controlled servomechanisms are the core elements of flexible manufacturing plants, primarily utilized to actuate robotic systems and automated machines. To match specific torque and costs requirements, typical servomechanism arrangements comprise precision reducers, which introduce motion errors that heavily limit the final performance achievable. Such errors are complex to model and depend from speed, dynamic loading conditions and temperature. Accurate characterization is fundamental to develop digital twins and advanced control strategies aimed at their active prediction and compensation. To properly assess the servomechanisms behavior and elaborate high-fidelity virtual models, instrumented test rigs have been proposed which can replicate the time-varying working conditions encountered in real industrial environments. In this context, the present paper reports about a novel engineering method for developing an active loading apparatus, namely a programmable mechatronic device that can deliver custom loads in a highly dynamic manner. The proposed system, consisting of a secondary servomotor and related rotating vector reducer, is integrated and synchronized within an existing instrumented test rig and is controlled in torque mode via a programmable logic controller. The paper mainly focuses on the description of the implemented closed-loop control and on the related tuning and calibration processes, demonstrating that the proposed solutions avoid important measurement errors that could compromise the final effectiveness of the system. The study finally explores the potential benefits of introducing a filter to further enhance system performance. At last, to prove the importance of stabilizing the rig and demonstrate the influence of the control parameters on its measurements, a standard test aimed at assessing the reducer transmission error is conducted adopting different parameter settings.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.