大型语言模型中基于上下文与基于结构的相对从句消歧

Elsayed Issa , Noureddine Atouf
{"title":"大型语言模型中基于上下文与基于结构的相对从句消歧","authors":"Elsayed Issa ,&nbsp;Noureddine Atouf","doi":"10.1016/j.procs.2024.10.217","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates the processing behavior of large language models (LLMs) in sentences involving ambiguous relative clauses (RCs). We are particularly interested in unravelling attachment preferences of LLMs in disambiguating RCs (complementizer phrases CPs modifying a genitival phrase), which are either semantically (context-biased) or syntactically (structure-biased) associated to one of the preceding NP referents. A low interpretation of the RC occurs when it is joined to the local NP (low attachment). A high interpretation is provided when the RC modifies the distant NP (high attachment). We create a small dataset of parallel low- and high-attachment sentences. We use zero-shot prompting to evaluate a set of LLMs based on insights from psycholinguistic experiments. Our results show variability in the performance of some models that favor low attachment (semantically-related meanings in the CP) while other models can resolve ambiguity by choosing high-attachment (structure-biased CPs). The findings are discussed in light of directing future experimental studies to consider a comparative paradigm encompassing both multi-modal LLMs and human subjects.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"244 ","pages":"Pages 425-431"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context-biased vs. structure-biased disambiguation of relative clauses in large language models\",\"authors\":\"Elsayed Issa ,&nbsp;Noureddine Atouf\",\"doi\":\"10.1016/j.procs.2024.10.217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work investigates the processing behavior of large language models (LLMs) in sentences involving ambiguous relative clauses (RCs). We are particularly interested in unravelling attachment preferences of LLMs in disambiguating RCs (complementizer phrases CPs modifying a genitival phrase), which are either semantically (context-biased) or syntactically (structure-biased) associated to one of the preceding NP referents. A low interpretation of the RC occurs when it is joined to the local NP (low attachment). A high interpretation is provided when the RC modifies the distant NP (high attachment). We create a small dataset of parallel low- and high-attachment sentences. We use zero-shot prompting to evaluate a set of LLMs based on insights from psycholinguistic experiments. Our results show variability in the performance of some models that favor low attachment (semantically-related meanings in the CP) while other models can resolve ambiguity by choosing high-attachment (structure-biased CPs). The findings are discussed in light of directing future experimental studies to consider a comparative paradigm encompassing both multi-modal LLMs and human subjects.</div></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"244 \",\"pages\":\"Pages 425-431\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050924030187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924030187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究调查了大型语言模型(LLMs)在涉及含混相对从句(RCs)的句子中的处理行为。我们特别感兴趣的是揭示 LLM 在消歧 RC(修饰属格短语的补语 CP)时的依附偏好,这些 RC 要么在语义上(基于上下文)要么在句法上(基于结构)与前面的一个 NP 指代相关联。当 RC 与本地 NP 相连(低附着)时,RC 会出现低解释。当 RC 修饰远处的 NP 时(高依附),则会出现高解释。我们创建了一个低依附性和高依附性平行句子的小型数据集。我们根据心理语言学实验的见解,使用零点提示来评估一组 LLM。我们的结果表明,一些模型偏向于低依附性(CP 中语义相关的含义),而另一些模型则可以通过选择高依附性(结构偏向的 CP)来解决歧义问题。讨论这些发现是为了指导未来的实验研究,以考虑一种包括多模态 LLM 和人类受试者的比较范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-biased vs. structure-biased disambiguation of relative clauses in large language models
This work investigates the processing behavior of large language models (LLMs) in sentences involving ambiguous relative clauses (RCs). We are particularly interested in unravelling attachment preferences of LLMs in disambiguating RCs (complementizer phrases CPs modifying a genitival phrase), which are either semantically (context-biased) or syntactically (structure-biased) associated to one of the preceding NP referents. A low interpretation of the RC occurs when it is joined to the local NP (low attachment). A high interpretation is provided when the RC modifies the distant NP (high attachment). We create a small dataset of parallel low- and high-attachment sentences. We use zero-shot prompting to evaluate a set of LLMs based on insights from psycholinguistic experiments. Our results show variability in the performance of some models that favor low attachment (semantically-related meanings in the CP) while other models can resolve ambiguity by choosing high-attachment (structure-biased CPs). The findings are discussed in light of directing future experimental studies to consider a comparative paradigm encompassing both multi-modal LLMs and human subjects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信