将立方状态方程与熵缩放概念耦合以模拟离子液体的粘度

IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
{"title":"将立方状态方程与熵缩放概念耦合以模拟离子液体的粘度","authors":"","doi":"10.1016/j.fluid.2024.114261","DOIUrl":null,"url":null,"abstract":"<div><div>This short paper investigates the applicability of our previously developed entropy scaling model to pure ionic liquids and concludes that it can be used without any modification and leads to very satisfactory results when coupled with the Peng-Robinson or Soave-Redlich-Kwong cubic equations of state. For the considered ionic liquids, the average deviations between calculated and experimental viscosities were found to be around 4.6 and 5.8% for the two cubic equations of state, respectively.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling cubic equations of state with the concept of entropy scaling to model the viscosity of ionic liquids\",\"authors\":\"\",\"doi\":\"10.1016/j.fluid.2024.114261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This short paper investigates the applicability of our previously developed entropy scaling model to pure ionic liquids and concludes that it can be used without any modification and leads to very satisfactory results when coupled with the Peng-Robinson or Soave-Redlich-Kwong cubic equations of state. For the considered ionic liquids, the average deviations between calculated and experimental viscosities were found to be around 4.6 and 5.8% for the two cubic equations of state, respectively.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037838122400236X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838122400236X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

这篇短文研究了我们之前开发的熵缩放模型在纯离子液体中的适用性,并得出结论:该模型无需任何修改即可使用,与 Peng-Robinson 或 Soave-Redlich-Kwong 立方状态方程结合使用可获得非常令人满意的结果。对于所考虑的离子液体,两种立方状态方程的计算粘度与实验粘度之间的平均偏差分别约为 4.6% 和 5.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling cubic equations of state with the concept of entropy scaling to model the viscosity of ionic liquids
This short paper investigates the applicability of our previously developed entropy scaling model to pure ionic liquids and concludes that it can be used without any modification and leads to very satisfactory results when coupled with the Peng-Robinson or Soave-Redlich-Kwong cubic equations of state. For the considered ionic liquids, the average deviations between calculated and experimental viscosities were found to be around 4.6 and 5.8% for the two cubic equations of state, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信