Xiaoyong Ding , Yitong Fang , Siqi Wang , Yao Zhou , Qiangqiang Liu , Yingle Liu , Ning Liu
{"title":"非政府组织涂层 AlH3 的点火和燃烧特性","authors":"Xiaoyong Ding , Yitong Fang , Siqi Wang , Yao Zhou , Qiangqiang Liu , Yingle Liu , Ning Liu","doi":"10.1016/j.combustflame.2024.113802","DOIUrl":null,"url":null,"abstract":"<div><div>AlH<sub>3</sub> is a highly promising additive for energetic materials and has gained considerable attention as a substitute fuel for aluminum in solid propellants. In order to improve its compatibility with energetic materials and oxidants, carbon coating materials are often used. Nitrated graphene oxide (NGO) was prepared and used as a surface modifier of <em>α</em>-AlH<sub>3</sub> in our study. Various analytical techniques were utilized to examine its structure and morphology, including Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), particle size distribution (PSD) and X-ray diffraction (XRD). The oxidization, ignition characteristics, flame propagation behavior and heat of combustion of AlH<sub>3</sub> and AlH<sub>3</sub>/NGO powder were investigated using differential thermal analysis (DTA), a laser igniter, a high-speed camera and an oxygen bomb calorimetry. Results show that NGO coating agent catalyzes the thermal decomposition and hydrogenation process of AlH<sub>3</sub>, and accelerates the oxidation process of AlH<sub>3</sub>. The addition of 4 % NGO decreases the oxidation activation energy of AlH<sub>3</sub> by about 8.94 %. The laser ignition energy of AlH<sub>3</sub>/NGO is much lower than that of AlH<sub>3</sub>, and the ignition energy decreases linearly as NGO is added from 1 % to 10 %. The flame development process supports the good thermal conductivity assistance effect of an appropriate amount of NGO in the combustion process of AlH<sub>3</sub> in air, which is consistent with the result of oxygen bomb test, indicating that the addition of NGO leads to an improvement in the combustion efficiency of AlH<sub>3</sub>.This may provide valuable insights for the development of new high-energy solid propellants.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113802"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ignition and combustion properties of NGO coated AlH3\",\"authors\":\"Xiaoyong Ding , Yitong Fang , Siqi Wang , Yao Zhou , Qiangqiang Liu , Yingle Liu , Ning Liu\",\"doi\":\"10.1016/j.combustflame.2024.113802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>AlH<sub>3</sub> is a highly promising additive for energetic materials and has gained considerable attention as a substitute fuel for aluminum in solid propellants. In order to improve its compatibility with energetic materials and oxidants, carbon coating materials are often used. Nitrated graphene oxide (NGO) was prepared and used as a surface modifier of <em>α</em>-AlH<sub>3</sub> in our study. Various analytical techniques were utilized to examine its structure and morphology, including Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), particle size distribution (PSD) and X-ray diffraction (XRD). The oxidization, ignition characteristics, flame propagation behavior and heat of combustion of AlH<sub>3</sub> and AlH<sub>3</sub>/NGO powder were investigated using differential thermal analysis (DTA), a laser igniter, a high-speed camera and an oxygen bomb calorimetry. Results show that NGO coating agent catalyzes the thermal decomposition and hydrogenation process of AlH<sub>3</sub>, and accelerates the oxidation process of AlH<sub>3</sub>. The addition of 4 % NGO decreases the oxidation activation energy of AlH<sub>3</sub> by about 8.94 %. The laser ignition energy of AlH<sub>3</sub>/NGO is much lower than that of AlH<sub>3</sub>, and the ignition energy decreases linearly as NGO is added from 1 % to 10 %. The flame development process supports the good thermal conductivity assistance effect of an appropriate amount of NGO in the combustion process of AlH<sub>3</sub> in air, which is consistent with the result of oxygen bomb test, indicating that the addition of NGO leads to an improvement in the combustion efficiency of AlH<sub>3</sub>.This may provide valuable insights for the development of new high-energy solid propellants.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"271 \",\"pages\":\"Article 113802\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001021802400511X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001021802400511X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Ignition and combustion properties of NGO coated AlH3
AlH3 is a highly promising additive for energetic materials and has gained considerable attention as a substitute fuel for aluminum in solid propellants. In order to improve its compatibility with energetic materials and oxidants, carbon coating materials are often used. Nitrated graphene oxide (NGO) was prepared and used as a surface modifier of α-AlH3 in our study. Various analytical techniques were utilized to examine its structure and morphology, including Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), particle size distribution (PSD) and X-ray diffraction (XRD). The oxidization, ignition characteristics, flame propagation behavior and heat of combustion of AlH3 and AlH3/NGO powder were investigated using differential thermal analysis (DTA), a laser igniter, a high-speed camera and an oxygen bomb calorimetry. Results show that NGO coating agent catalyzes the thermal decomposition and hydrogenation process of AlH3, and accelerates the oxidation process of AlH3. The addition of 4 % NGO decreases the oxidation activation energy of AlH3 by about 8.94 %. The laser ignition energy of AlH3/NGO is much lower than that of AlH3, and the ignition energy decreases linearly as NGO is added from 1 % to 10 %. The flame development process supports the good thermal conductivity assistance effect of an appropriate amount of NGO in the combustion process of AlH3 in air, which is consistent with the result of oxygen bomb test, indicating that the addition of NGO leads to an improvement in the combustion efficiency of AlH3.This may provide valuable insights for the development of new high-energy solid propellants.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.