{"title":"通过饱和对抛物面槽式太阳能集热器进行鲁棒双线性跟踪控制","authors":"Sarah Mechhoud , Zehor Belkhatir","doi":"10.1016/j.jprocont.2024.103321","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the problem of robust tracking control of heat transport in a Parabolic Trough Solar Collector (PTSC), where the output has to track a desired reference trajectory. In this work, the PTSC is modeled by state-space bilinear dynamics. The manipulated variable is the pump volumetric flow rate, and the source term, i.e., solar irradiance, is assumed to be unmeasured. In addition, the actuator’s physical constraints induce saturation bounds on the manipulated variable and need to be considered explicitly in the controller design. To deal with these challenges, we first propose a saturated state-feedback law that meets the control objectives. Then, we reconstruct the unknown time-varying source term using an adaptive estimator. Later, through Lyapunov stability analysis, we prove that the closed-loop system and the output tracking error are uniformly ultimately stable. Numerical simulations attest to the performance of the proposed control strategy.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"143 ","pages":"Article 103321"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust bilinear tracking control of a parabolic trough solar collector via saturation\",\"authors\":\"Sarah Mechhoud , Zehor Belkhatir\",\"doi\":\"10.1016/j.jprocont.2024.103321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the problem of robust tracking control of heat transport in a Parabolic Trough Solar Collector (PTSC), where the output has to track a desired reference trajectory. In this work, the PTSC is modeled by state-space bilinear dynamics. The manipulated variable is the pump volumetric flow rate, and the source term, i.e., solar irradiance, is assumed to be unmeasured. In addition, the actuator’s physical constraints induce saturation bounds on the manipulated variable and need to be considered explicitly in the controller design. To deal with these challenges, we first propose a saturated state-feedback law that meets the control objectives. Then, we reconstruct the unknown time-varying source term using an adaptive estimator. Later, through Lyapunov stability analysis, we prove that the closed-loop system and the output tracking error are uniformly ultimately stable. Numerical simulations attest to the performance of the proposed control strategy.</div></div>\",\"PeriodicalId\":50079,\"journal\":{\"name\":\"Journal of Process Control\",\"volume\":\"143 \",\"pages\":\"Article 103321\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Process Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959152424001616\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424001616","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Robust bilinear tracking control of a parabolic trough solar collector via saturation
This paper investigates the problem of robust tracking control of heat transport in a Parabolic Trough Solar Collector (PTSC), where the output has to track a desired reference trajectory. In this work, the PTSC is modeled by state-space bilinear dynamics. The manipulated variable is the pump volumetric flow rate, and the source term, i.e., solar irradiance, is assumed to be unmeasured. In addition, the actuator’s physical constraints induce saturation bounds on the manipulated variable and need to be considered explicitly in the controller design. To deal with these challenges, we first propose a saturated state-feedback law that meets the control objectives. Then, we reconstruct the unknown time-varying source term using an adaptive estimator. Later, through Lyapunov stability analysis, we prove that the closed-loop system and the output tracking error are uniformly ultimately stable. Numerical simulations attest to the performance of the proposed control strategy.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.