Pensiri Akkajit , Md Eshrat E. Alahi , Arsanchai Sukkuea
{"title":"利用深度学习加强海洋环境中微塑料的检测和分类","authors":"Pensiri Akkajit , Md Eshrat E. Alahi , Arsanchai Sukkuea","doi":"10.1016/j.rsma.2024.103880","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics (MPs) pose a growing environmental threat due to their accumulation and ecological impact. This study aimed to overcome the limitations of traditional methods, which are labor-intensive and prone to errors, in order to detect and classify MPs more effectively against marine pollution. We assessed object detection and classification algorithms: YOLOv8x, YOLOv8x (with augmentation), YOLOv8m, YOLOv8m (with augmentation), YOLO-NAS-L, and YOLO-NAS-L (with augmentation), focusing on four MP morphologies: fiber, film, fragment, and pellet. The dataset was divided into 80 % for training (320 images), 20 % for validation (80 images), and a fixed testing set of 200 images. The images were augmented using rotation (+25° and −25°), resizing (640 × 640 pixels), zooming, auto-orient strips, flipping, and noise application. This expanded the training set by 300 %, resulting in a total of 1400 images. The YOLOv8 models, particularly when augmented, outperformed the YOLO-NAS-L models in both [email protected] and precision across all categories. Notably, YOLOv8x achieved an exceptional 99.0 % in both precision and [email protected], with an impressive inference time of only 1.2 ms per image. The implementation of augmentation significantly enhanced detection accuracy across various models. With augmentation, YOLOv8x, YOLOv8m, and YOLO-NAS-L consistently achieved precision levels exceeding 99 %. For real-time applications, YOLOv8x was selected for the web application designed to detect and classify MPs, providing a more accurate and efficient solution compared to conventional methods. This model serves as a valuable resource for researchers in MP analysis, improving accuracy and reliability in environmental monitoring.</div></div>","PeriodicalId":21070,"journal":{"name":"Regional Studies in Marine Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced detection and classification of microplastics in marine environments using deep learning\",\"authors\":\"Pensiri Akkajit , Md Eshrat E. Alahi , Arsanchai Sukkuea\",\"doi\":\"10.1016/j.rsma.2024.103880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microplastics (MPs) pose a growing environmental threat due to their accumulation and ecological impact. This study aimed to overcome the limitations of traditional methods, which are labor-intensive and prone to errors, in order to detect and classify MPs more effectively against marine pollution. We assessed object detection and classification algorithms: YOLOv8x, YOLOv8x (with augmentation), YOLOv8m, YOLOv8m (with augmentation), YOLO-NAS-L, and YOLO-NAS-L (with augmentation), focusing on four MP morphologies: fiber, film, fragment, and pellet. The dataset was divided into 80 % for training (320 images), 20 % for validation (80 images), and a fixed testing set of 200 images. The images were augmented using rotation (+25° and −25°), resizing (640 × 640 pixels), zooming, auto-orient strips, flipping, and noise application. This expanded the training set by 300 %, resulting in a total of 1400 images. The YOLOv8 models, particularly when augmented, outperformed the YOLO-NAS-L models in both [email protected] and precision across all categories. Notably, YOLOv8x achieved an exceptional 99.0 % in both precision and [email protected], with an impressive inference time of only 1.2 ms per image. The implementation of augmentation significantly enhanced detection accuracy across various models. With augmentation, YOLOv8x, YOLOv8m, and YOLO-NAS-L consistently achieved precision levels exceeding 99 %. For real-time applications, YOLOv8x was selected for the web application designed to detect and classify MPs, providing a more accurate and efficient solution compared to conventional methods. This model serves as a valuable resource for researchers in MP analysis, improving accuracy and reliability in environmental monitoring.</div></div>\",\"PeriodicalId\":21070,\"journal\":{\"name\":\"Regional Studies in Marine Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regional Studies in Marine Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352485524005139\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regional Studies in Marine Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352485524005139","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Enhanced detection and classification of microplastics in marine environments using deep learning
Microplastics (MPs) pose a growing environmental threat due to their accumulation and ecological impact. This study aimed to overcome the limitations of traditional methods, which are labor-intensive and prone to errors, in order to detect and classify MPs more effectively against marine pollution. We assessed object detection and classification algorithms: YOLOv8x, YOLOv8x (with augmentation), YOLOv8m, YOLOv8m (with augmentation), YOLO-NAS-L, and YOLO-NAS-L (with augmentation), focusing on four MP morphologies: fiber, film, fragment, and pellet. The dataset was divided into 80 % for training (320 images), 20 % for validation (80 images), and a fixed testing set of 200 images. The images were augmented using rotation (+25° and −25°), resizing (640 × 640 pixels), zooming, auto-orient strips, flipping, and noise application. This expanded the training set by 300 %, resulting in a total of 1400 images. The YOLOv8 models, particularly when augmented, outperformed the YOLO-NAS-L models in both [email protected] and precision across all categories. Notably, YOLOv8x achieved an exceptional 99.0 % in both precision and [email protected], with an impressive inference time of only 1.2 ms per image. The implementation of augmentation significantly enhanced detection accuracy across various models. With augmentation, YOLOv8x, YOLOv8m, and YOLO-NAS-L consistently achieved precision levels exceeding 99 %. For real-time applications, YOLOv8x was selected for the web application designed to detect and classify MPs, providing a more accurate and efficient solution compared to conventional methods. This model serves as a valuable resource for researchers in MP analysis, improving accuracy and reliability in environmental monitoring.
期刊介绍:
REGIONAL STUDIES IN MARINE SCIENCE will publish scientifically sound papers on regional aspects of maritime and marine resources in estuaries, coastal zones, continental shelf, the seas and oceans.