Yuan Zhang , Zixi Wang , Xiaodi Guan , Lijun He , Fan Li
{"title":"在物联网支持的移动云推理中对中间特征进行私有压缩","authors":"Yuan Zhang , Zixi Wang , Xiaodi Guan , Lijun He , Fan Li","doi":"10.1016/j.displa.2024.102857","DOIUrl":null,"url":null,"abstract":"<div><div>In the emerging Internet of Things (IoT) paradigm, mobile cloud inference serves as an efficient application framework that relieves the computation and storage burden on resource-constrained mobile devices by offloading the workload to cloud servers. However, mobile cloud inference encounters computation, communication, and privacy challenges to ensure efficient system inference and protect the privacy of mobile users’ collected information. To address the deployment of deep neural networks (DNN) with large capacity, we propose splitting computing (SC) where the entire model is divided into two parts, to be executed on mobile and cloud ends respectively. However, the transmission of intermediate data poses a bottleneck to system performance. This paper initially demonstrates the privacy issue arising from the machine analysis-oriented intermediate feature. We conduct a preliminary experiment to intuitively reveal the latent potential for enhancing the privacy-preserving ability of the initial feature. Motivated by this, we propose a framework for privacy-preserving intermediate feature compression, which addresses the limitations in both compression and privacy that arise in the original extracted feature data. Specifically, we propose a method that jointly enhances privacy and encoding efficiency, achieved through the collaboration of the encoding feature privacy enhancement module and the privacy feature ordering enhancement module. Additionally, we develop a gradient-reversal optimization strategy based on information theory to ensure the utmost concealment of core privacy information throughout the entire codec process. We evaluate the proposed method on two DNN models using two datasets, demonstrating its ability to achieve superior analysis accuracy and higher privacy preservation than HEVC. Furthermore, we provide an application case of a wireless sensor network to validate the effectiveness of the proposed method in a real-world scenario.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"85 ","pages":"Article 102857"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Private compression for intermediate feature in IoT-supported mobile cloud inference\",\"authors\":\"Yuan Zhang , Zixi Wang , Xiaodi Guan , Lijun He , Fan Li\",\"doi\":\"10.1016/j.displa.2024.102857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the emerging Internet of Things (IoT) paradigm, mobile cloud inference serves as an efficient application framework that relieves the computation and storage burden on resource-constrained mobile devices by offloading the workload to cloud servers. However, mobile cloud inference encounters computation, communication, and privacy challenges to ensure efficient system inference and protect the privacy of mobile users’ collected information. To address the deployment of deep neural networks (DNN) with large capacity, we propose splitting computing (SC) where the entire model is divided into two parts, to be executed on mobile and cloud ends respectively. However, the transmission of intermediate data poses a bottleneck to system performance. This paper initially demonstrates the privacy issue arising from the machine analysis-oriented intermediate feature. We conduct a preliminary experiment to intuitively reveal the latent potential for enhancing the privacy-preserving ability of the initial feature. Motivated by this, we propose a framework for privacy-preserving intermediate feature compression, which addresses the limitations in both compression and privacy that arise in the original extracted feature data. Specifically, we propose a method that jointly enhances privacy and encoding efficiency, achieved through the collaboration of the encoding feature privacy enhancement module and the privacy feature ordering enhancement module. Additionally, we develop a gradient-reversal optimization strategy based on information theory to ensure the utmost concealment of core privacy information throughout the entire codec process. We evaluate the proposed method on two DNN models using two datasets, demonstrating its ability to achieve superior analysis accuracy and higher privacy preservation than HEVC. Furthermore, we provide an application case of a wireless sensor network to validate the effectiveness of the proposed method in a real-world scenario.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"85 \",\"pages\":\"Article 102857\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014193822400221X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014193822400221X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Private compression for intermediate feature in IoT-supported mobile cloud inference
In the emerging Internet of Things (IoT) paradigm, mobile cloud inference serves as an efficient application framework that relieves the computation and storage burden on resource-constrained mobile devices by offloading the workload to cloud servers. However, mobile cloud inference encounters computation, communication, and privacy challenges to ensure efficient system inference and protect the privacy of mobile users’ collected information. To address the deployment of deep neural networks (DNN) with large capacity, we propose splitting computing (SC) where the entire model is divided into two parts, to be executed on mobile and cloud ends respectively. However, the transmission of intermediate data poses a bottleneck to system performance. This paper initially demonstrates the privacy issue arising from the machine analysis-oriented intermediate feature. We conduct a preliminary experiment to intuitively reveal the latent potential for enhancing the privacy-preserving ability of the initial feature. Motivated by this, we propose a framework for privacy-preserving intermediate feature compression, which addresses the limitations in both compression and privacy that arise in the original extracted feature data. Specifically, we propose a method that jointly enhances privacy and encoding efficiency, achieved through the collaboration of the encoding feature privacy enhancement module and the privacy feature ordering enhancement module. Additionally, we develop a gradient-reversal optimization strategy based on information theory to ensure the utmost concealment of core privacy information throughout the entire codec process. We evaluate the proposed method on two DNN models using two datasets, demonstrating its ability to achieve superior analysis accuracy and higher privacy preservation than HEVC. Furthermore, we provide an application case of a wireless sensor network to validate the effectiveness of the proposed method in a real-world scenario.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.