Kaixin Su , Jiwang Zhang , Shengchuan Wu , Jinfa Guan , Hang Li , Dongdong Ji , Honglan Xie
{"title":"结合表面纳米结晶预处理、微弧氧化和密封后处理形成的复合陶瓷涂层铝合金的腐蚀和腐蚀疲劳性能","authors":"Kaixin Su , Jiwang Zhang , Shengchuan Wu , Jinfa Guan , Hang Li , Dongdong Ji , Honglan Xie","doi":"10.1016/j.ijfatigue.2024.108661","DOIUrl":null,"url":null,"abstract":"<div><div>The aluminum alloy components of the high-speed railway catenary, when exposed to the corrosive media in coastal regions, are confronted with a significant issue of corrosion-fatigue failure. Therefore, this study prepares a kind of composite ceramic coating formed by combining shot peening surface nanocrystallization pre-treatment, micro-arc oxidation (MAO) ceramic coating, and acrylic resin sealing post-treatment on 6082-T6 aluminum alloy used for high-speed railway catenary. Then, the corrosion and corrosion-fatigue properties of composite ceramic coated 6082-T6 aluminum alloy are investigated. Results indicate that the pre-treatment increases the thickness of ceramic coating, however results in larger internal defects connecting ceramic coating’s outer surface, leading to inferior corrosion resistance compared to plain ceramic coatings. However, owing to the presence of compressive residual stress and grain-refined layers within the substrate beneath the ceramic coating, ceramic coated specimens subjected to the pre-treatment exhibit superior corrosion-fatigue properties compared to plain coated specimens. Additionally, the post-treatment effectively reduces coating porosity and enhances corrosion resistance. In conclusion, the composite ceramic coating in this paper is demonstrated to exhibit a combination of superior corrosion resistance, fatigue and corrosion-fatigue properties.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108661"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion and corrosion-fatigue properties of composite ceramic coated aluminum alloy formed by combining surface nanocrystallization pre-treatment, micro-arc oxidation, and sealing post-treatment\",\"authors\":\"Kaixin Su , Jiwang Zhang , Shengchuan Wu , Jinfa Guan , Hang Li , Dongdong Ji , Honglan Xie\",\"doi\":\"10.1016/j.ijfatigue.2024.108661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aluminum alloy components of the high-speed railway catenary, when exposed to the corrosive media in coastal regions, are confronted with a significant issue of corrosion-fatigue failure. Therefore, this study prepares a kind of composite ceramic coating formed by combining shot peening surface nanocrystallization pre-treatment, micro-arc oxidation (MAO) ceramic coating, and acrylic resin sealing post-treatment on 6082-T6 aluminum alloy used for high-speed railway catenary. Then, the corrosion and corrosion-fatigue properties of composite ceramic coated 6082-T6 aluminum alloy are investigated. Results indicate that the pre-treatment increases the thickness of ceramic coating, however results in larger internal defects connecting ceramic coating’s outer surface, leading to inferior corrosion resistance compared to plain ceramic coatings. However, owing to the presence of compressive residual stress and grain-refined layers within the substrate beneath the ceramic coating, ceramic coated specimens subjected to the pre-treatment exhibit superior corrosion-fatigue properties compared to plain coated specimens. Additionally, the post-treatment effectively reduces coating porosity and enhances corrosion resistance. In conclusion, the composite ceramic coating in this paper is demonstrated to exhibit a combination of superior corrosion resistance, fatigue and corrosion-fatigue properties.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"190 \",\"pages\":\"Article 108661\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324005206\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005206","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Corrosion and corrosion-fatigue properties of composite ceramic coated aluminum alloy formed by combining surface nanocrystallization pre-treatment, micro-arc oxidation, and sealing post-treatment
The aluminum alloy components of the high-speed railway catenary, when exposed to the corrosive media in coastal regions, are confronted with a significant issue of corrosion-fatigue failure. Therefore, this study prepares a kind of composite ceramic coating formed by combining shot peening surface nanocrystallization pre-treatment, micro-arc oxidation (MAO) ceramic coating, and acrylic resin sealing post-treatment on 6082-T6 aluminum alloy used for high-speed railway catenary. Then, the corrosion and corrosion-fatigue properties of composite ceramic coated 6082-T6 aluminum alloy are investigated. Results indicate that the pre-treatment increases the thickness of ceramic coating, however results in larger internal defects connecting ceramic coating’s outer surface, leading to inferior corrosion resistance compared to plain ceramic coatings. However, owing to the presence of compressive residual stress and grain-refined layers within the substrate beneath the ceramic coating, ceramic coated specimens subjected to the pre-treatment exhibit superior corrosion-fatigue properties compared to plain coated specimens. Additionally, the post-treatment effectively reduces coating porosity and enhances corrosion resistance. In conclusion, the composite ceramic coating in this paper is demonstrated to exhibit a combination of superior corrosion resistance, fatigue and corrosion-fatigue properties.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.